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Abstract

Gonçalves and Ng (2024) propose an interesting and simple way to improve counter-

factual imputation methods when errors are predictable. For unconditional analyses,

this approach yields smaller mean-squared error and tighter prediction intervals in large

samples, even if the dependence of the errors is misspecified. For conditional analyses,

this approach corrects the bias of standard methods, and provides valid asymptotic in-

ference, if the dependence of the errors is correctly specified. In this comment, we first

discuss how the assumptions imposed on the errors depend on the model and estimator

adopted. This enables researchers to assess the validity of the assumptions imposed on

the structure of the errors, and the relevant information set for conditional analyses.

We then propose a simple sensitivity analysis in order to quantify the amount of mis-

specification on the dependence structure of the errors required for the conclusions of

conditional analyses to be changed.

1 Introduction

There is a large literature on the estimation of causal effects in panel data settings (see

Arkhangelsky and Imbens (2023) for a recent survey). In such settings, the time series

and cross-section of the errors may provide useful information to construct counterfactuals.

However, the use of such information has been largely overlooked in this literature. We
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congratulate Silvia Gonçalves and Serena Ng for proposing an interesting and simple way to

include this information into the analysis.

The correction proposed by Gonçalves and Ng (2024) can be seen as an add-on to standard

methods in this literature, and is simple to implement. When we consider unconditional

analysis, this correction (asymptotically) provides gains in terms of lower mean squared

errors and more powerful tests at virtually no cost. This is true even if the dependence of

the errors is misspecified. When we analyze the properties of the estimators conditionally on

the relevant information (such as the realization of the errors of the pre-treatment periods),

then standard estimators will generally be biased, and we may have inference distortions. The

add-on proposed by Gonçalves and Ng (2024) corrects these problems, if we use the correct

specification for the dependence of the errors. However, we cannot guarantee conditionally

unbiased estimators and tests with correct sizes if the dependence of the errors is misspecified.

Overall, considering the possible combinations of scenarios, depending on whether the

analysis is unconditional vs conditional, and whether the structure of the errors is correctly

vs incorrectly specified, the add-on proposed by Gonçalves and Ng (2024) provides improve-

ments in three out of four scenarios. In one of them, when we consider conditional analysis

with misspecified dependence of the errors, it is not possible to guarantee that the add-on

proposed by Gonçalves and Ng (2024) provides valid asymptotic conditional inference or,

more generally, improvements relative to standard methods that do not use this correction.

Importantly, standard methods without the correction proposed by Gonçalves and Ng (2024)

would also fail to provide unbiased estimators and valid asymptotic inference in this scenario.

In this note, we first discuss how the definition of the error term in the setting proposed

by Gonçalves and Ng (2024) depends on the specific model and estimator that is analyzed.

This may be relevant in evaluating the information set we should condition on, and the

assumptions we impose on the structure of the errors. For example, we show that there are

some settings in which it is reasonable to consider the properties of the estimator conditional

on only pre-treatment errors, and some settings in which it would be more reasonable to also

condition on other variables, such as pre-treatment outcomes, and post-treatment outcomes

of the controls. In such settings, if we consider a conditional analysis on all relevant informa-

tion that may help predict counterfactual outcomes, then a correction using only information

on pre-treatment errors would be misspecified. Moreover, we also discuss the possibility of

misspecification even when we are conditioning on the correct variables. Given the possibil-

ity of misspecification, we then propose a simple sensitivity analysis to quantify the amount

of misspecification on the dependence structure required for the conclusions of conditional

analyses to be changed.
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2 Setting

In line with Gonçalves and Ng (2024), we consider a setting with T periods, where treatment

starts after period T0 < T . We have N units. For ease of exposition, we consider the case

in which only unit i = 1 is treated, so the number of control units is N0 = N − 1. We

let Yi,t(0) and Yi,t(1) be the potential outcomes for unit i at time t. Therefore, we observe

Yi,t = Yi,t(1) for unit i = 1 at t > T0, and Yi,t = Yi,t(0) for all other cases. The goal is

to estimate δ1,T0+h = Y1,T0+h(1) − Y1,T0+h(0), for some h ∈ [1, T − T0] ∩ N. The main idea

is to estimate a counterfactual Ŷ1,T0+h(0), which will in turn lead to an estimator for the

treatment effect δ̂1,T0+h = Y1,T0+h(1)− Ŷ1,T0+h(0).

Gonçalves and Ng (2024) consider a model for the potential outcome Y1,t(0) = m1,t+e1,t,

where it is assumed that E[e1,t] = 0, and m1,t is a pseudo-true conditional mean. Standard

methods in this literature generally construct the counterfactual for Ŷ1,T0+h(0) as an estimator

for m1,T0+h, yielding the estimator for the treatment effects δ̂1,T0+h = Y1,T0+h − m̂1,T0+h.

Gonçalves and Ng (2024) propose a correction to take the predictability of the errors into

account, by including a correction term δ̂+1,T0+h = δ̂1,T0+h − ρ̂hê1,T0 , where ê1,t is the residual

Y1,t − m̂1,t, while ρ̂h is the least squares slope of a regression of ê1,t on ê1,t−h in the pre-

treatment periods (they also consider alternative forms of corrections).

3 Defining the error term

Importantly, m1,t is implicitly defined as the probability limit of the counterfactual estimator

m̂1,t, and this in turn defines the error term e1,t, which will depend on the assumptions on

the potential outcomes and on the estimator used to construct the counterfactual. This

modeling is very interesting by itself, because, for a given setting and estimator, we can

derive the associated error term e1,t, and analyze the restrictions we need to impose so

that the assumption E[e1,t] = 0 is satisfied. This would guarantee that, for unconditional

analysis, the original estimator (without the correction) is asymptotically unbiased, and

that, under stationarity and weak dependence assumptions, it would be possible to derive

asymptotically valid inference methods (for examples, see Chernozhukov et al. (2021) and

Section 4). Moreover, an analysis of the associated error term e1,t is crucial to understand

the assumptions for the conditional analysis considered by Gonçalves and Ng (2024).

For example, suppose potential outcomes Yi,t(0) follow a linear factor model, as considered

by Ferman and Pinto (2021) and Ferman (2021),

Yi,t(0) = ci + γt + λtµi + εi,t, (1)
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where ci and δt are unit- and time-invariant fixed effects, λt is an 1×F vector of unobserved

common factors, µi is an F × 1 vector of unknown factor loadings, and {ϵi,t} are unobserved

idiosyncratic shocks (which are independent across i, and independent of the factor structure

{λtµi}).
In this case, depending on the proposed estimator and the characteristics of the setting,

we would have a different pseudo-true conditional mean and, consequently, we would have a

different associated e1,t. If we consider the standard SC estimator in a setting with N0 → ∞
and T0 → ∞, then under the assumptions considered by Ferman (2021), we have m̂1,t

p→
c1+γt+λtµ1. Therefore, we have that e1,t = ε1,t in this setting. Interestingly, note that, in this

case, the condition E[e1,t] = 0 does not impose restrictions on the factor model structure, so

that we may have selection into treatment based on the factor model structure, as discussed

by Ferman (2021). However, this restriction implies that we cannot have selection into

treatment based on the idiosyncratic shocks εi,t. Moreover, for the purposes of Gonçalves

and Ng (2024), we have that, conditional on the past errors, information on past outcomes

would not provide any additional information on the prediction error of δ̂1,T0+h. Likewise,

under the assumption that {εi,t} is independent in the cross-section, post-treatment errors

of the controls would also not provide relevant information to construct the counterfactual of

Y1,T0+h. Therefore, it would be reasonable to condition the analysis on only the pre-treatment

errors. This would also be the case in other settings/estimators, such as those considered by

Arkhangelsky et al. (2021).

In contrast, if we consider a setting in which T0 → ∞, but N0 is fixed, as considered

by Ferman and Pinto (2021), then e1,t would depend on how we construct the estimator

for the counterfactual of Y1,T0+h(0). For example, if we consider a demeaned SC estimator

(Ferman and Pinto, 2021; Doudchenko and Imbens, 2017), then e1,t = ε1,t −
∑N

i=2 w̄iεi,t +

λt

(
µ1 −

∑N
i=2 w̄iµi

)
, where (w̄2, ..., w̄N) will generally be such that µ1 ̸=

∑N
i=2 w̄iµi. In this

case, the assumption E[e1,t] = 0 has a different economic meaning, as it would essentially

require not only E[εi,t] = 0, but also E[λt] = 0. This essentially means that we cannot

have selection on time-varying unobservables (see Ferman and Pinto (2021) for details).

For the purposes of Gonçalves and Ng (2024), we note that, in this case, pre-treatment

outcomes would be informative about the post-treatment errors, even after we condition on

pre-treatment errors. In this case, a simple correction that relies on, for example, an AR(1)

model for the errors (if this is correctly specified) would provide asymptotically unbiased

estimators and valid inference, conditional on only pre-treatment errors. However, this

would not be the case once we condition on all available pre-treatment information. Likewise,

this structure of the errors also means that post-treatment errors of the treated would be

correlated with the post-treatment errors and outcomes of the controls. Therefore, if we
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consider an analysis conditional also on post-treatment information of the controls, then we

should also take that into account. If we consider the original SC estimator (instead of its

demeaned version), we would have a different associated error, but similar conclusions would

apply.

Overall, we note that the properties of the error term e1,t depend crucially on the setting

we analyze and on the estimator we use. Understanding the properties of this error term

is crucial when we want to consider conditional analysis, as this would inform us what are

the relevant information set we should condition on. For example, if we are considering the

setting and assumptions from Ferman (2021), then we would only have to condition on pre-

treatment errors. In contrast, if we are considering the setting and assumptions from Ferman

and Pinto (2021), then we might also have to condition on pre-treatment outcomes, and post-

treatment outcomes of the controls (in addition to the pre-treatment errors). Moreover, we

also note that the characteristics of e1,t would also determine which kind of assumptions are

reasonable to assume on the cross-section and serial dependence of e1,t.

4 Sensitivity Analysis

The discussion from Section 2 shows that, in some settings, it is reasonable to condition

only on past errors e1,t. This would be the case, for example, when the estimator for the

counterfactual, Ŷ1,T0+h(0) asymptotically recovers all the systematic part of Y1,T0+h(0), so

the estimation error reflects only idiosyncratic shocks of the treated unit. In several set-

tings, however, this would not be the case, and E[e1,T0+h|H], where H is the set of relevant

information we are conditioning on, should not be a simple function ρhe1,T0 . In other cases,

we may even consider a setting in which the relevant information set H is actually only the

pre-treatment errors, but the conditional expectation E[e1,T0+h|H] does not follow a simple

linear function of only e1,T0 (as would be the case if e1,t follows an AR(1) process). Yet an-

other possibility is a setting with conditional heterokesdaticity, in which correctly accounting

for the conditional mean yields a conditionally unbiased estimator, but this would not be

sufficient to ensure valid conditional tests. We do not focus on this last case in the main text,

but we discuss the possibility of conducting sensitivity analysis in such settings in Appendix

B.

For these settings in which we consider a simple parametric correction ρhe1,T0 , but we have

misspecification E[e1,T0+h|H] ̸= ρhe1,T0 (for example, because other variables are relevant for

this conditional mean, or because we need a more complex parametrization of past errors),

then we would be in a scenario in which Gonçalves and Ng (2024) do not offer guarantees

in terms of asymptotic conditional unbiasedness and conditionally valid inference. One
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alternative in this case would be to consider a more flexible specification for E[e1,T0+h|H]. For

example, by letting it be a function of more variables (such as the pre-treatment outcomes, in

addition to the pre-treatment errors), and/or by allowing for more flexible functional forms.

The addition of more variables in the correction is mentioned in Section 4.1 of Gonçalves and

Ng (2024). However, we note that both alternatives would make the correction substantially

more complex, and would require more of the data.

We consider instead a sensitivity analysis with respect to the approximation error of the

conditional expectation function, |E[e1,T0+h|H]− ρhe1,T0|. Suppose the researcher believes

there exists a constant ∆ ≥ 0 that bounds the misspecification error almost-surely, i.e.

|E[e1,T0+h|H]− ρhe1,T0 | ≤ ∆ almost surely. We seek to find lower bounds for the misspecfi-

cation degree ∆ that would revert the conclusions of a conditional analysis.

In order to present the sensitivity analysis in more generality, we assume the researcher

uses a resampling procedure to approximate the unconditional distribution of e1,T0+h−ρhe1,T0 ,

which we denote by F+. While the results derived by Gonçalves and Ng (2024) assume

Gaussianity for simplicity, they also mention in their Section 5 the possibility of relaxing this

assumption using resampling procedures. Specifically, we assume the researcher estimates

F+ by:

F̂+(c) =
1

T0 − h

T0−h∑
t=1

1{ê1,T0+h − ρ̂hê1,T0 ≤ c}, c ∈ R . (2)

This estimator will be consistent provided that {e1,t}t is stationary and weakly depen-

dent (as assumed by Gonçalves and Ng (2024)), and under mild conditions on the estimated

pseudo-mean (e.g. Chernozhukov et al. (2021) or Alvarez and Ferman (2023)). If the distri-

bution of the pair (e1,t, e1,t+h) is continuous and the estimator F̂+ is pointwise consistent to

F+, then the prediction interval

[δ̂+1,T0+h −QF̂+
(1− α/2), δ̂+1,T0+h −QF̂+

(α/2)] , (3)

will asymptotically cover δ1,T0+h with unconditional probability (1 − α), where QH denotes

the quantile function of a distribution function H (see Appendix A). Therefore, these pre-

diction intervals would be valid for unconditional analysis, even under misspecification of

E[e1,T0+h|H]. However, with misspecification of the correction term, such prediction inter-

vals may not be valid for conditional analysis.

For the sensitivity analysis, we assume a location model for the conditional distribu-

tion, i.e. that e1,T0+h − E[e1,T0+h|H] is independent of H. This assumption implies that

it would suffice to correctly account for the conditional mean E[e1,T0+h|H] in order to con-
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struct a conditionally valid test. This is the case in (nonlinear) autorregressive models for

e1,t with additive innovations that are independent from H, an example of which is the

linear AR(1) model assumed in Section 5.1 of Gonçalves and Ng (2024) with the choice

H = σ(e1,T0 , e1,T0−1, . . .). We note however that this assumption precludes conditional het-

eroskedasticity. In Appendix B, we show how sensitivity analysis can be performed in a

model that allows for both misspecification of the conditional mean as well as conditional

heterokedasticity. This extension can also be considered for sensitivity analysis in uncondi-

tional inference when one believes that the unconditional variance of e1,t changes after T0.

In such case, the resampling procedure we outline (as well as other procedures, such as those

proposed by Chernozhukov et al. (2021)) would be invalid even for unconditional analysis.

Therefore, the sensitivity analyses we propose would be an alternative for these settings

as well. These analyses can be conducted using either the estimator with the correction

proposed by Gonçalves and Ng (2024) or without it.

Under the assumption that e1,T0+H − E[e1,T0+h|H] is independent of H, we are able to

show that, for any s ∈ R:

P [e1,T0+h − ρhe1,T0 ≤ s|H] ≤ P [e1,T0+h − E[e1,T0+h|H] ≤ s+∆] ≤ F+(s+ 2∆) ,

and, similarly

P [e1,T0+h − ρhe1,T0 ≤ s|H] ≥ F+(s− 2∆)

As a consequence, we have that, for any u ∈ (0, 1):

QF+(u)− 2∆ ≤ Qe1,T0+h−ρhe1,T0 |H(u) ≤ QF+(u) + 2∆. (4)

Suppose that, upon computation of prediction interval (3), the researcher finds an interval

[a, b], with a > 0. The researcher would like to quantify the bound ∆ on the misspecification

that would lead, in a worst-case scenario, the conditional prediction interval based on the

correct conditional quantile Qe1,T0+h−ρhe1,T0 |H(u) to contain zero. From (4), a lower bound

for this quantity can be estimated as:

∆∗ =
a

2
.

Notice that ∆∗ can be easily computed. It also has a very intuitive interpretation.

The larger is a, meaning the farther is a from zero, one would require a larger degree of

misspecification to change the conclusions of the analysis. A similar sensitivity analysis

holds in the case where [a, b], with b < 0. In this case, a lower bound for the minimal degree

of misspecification that would revert the conclusions of the analysis in a worst-case scenario
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is ∆∗ = − b
2
.

An alternative to the sensitivity analysis is to start with an upper bound ∆ for the

misspecification, and to use (4) to compute prediction intervals that would have valid condi-

tional coverage, if the misspecification were at most ∆. In this case, a misspecification-robust

conditional (1− α)-prediction interval for δ1,T0+h would be given by:

[δ̂+1,T0+h −QF̂+
(1− α/2)− 2∆, δ̂+1,T0+h −QF̂+

(α/2) + 2∆] . (5)

This construction is closely related to the construction of confidence regions for iden-

tified sets in the partial identification literature. To see this, consider for simplicity the

case in which treatment effects are homogeneous (nonstochastic) over repeated samples, so

we may view δ1,T0+h as a fixed parameter. Notice that, under the misspecification bound

|E[e1,T0+h|H]− ρhe1,T0 | ≤ ∆ almost surely, we can ensure that δ1,T0+h ∈ S, where S = [δ̃ −
∆, δ̃+∆] and δ̃ = E[plimT→∞ δ̂+1,T0+h|H]. In this setting, an asymptotically conditionally valid

confidence region for S would be given by [δ̂+1,T0+h−Q∗(1−α/2)−∆, δ̂+1,T0+h−Q∗(α/2)+∆],

where Q∗ is the quantile of the distribution of e1,T0+h−E[e1,T0+h|H]. However, this object de-

pends on E[e1,T0+h|H], about whose specification we wish to remain agnostic. We note, how-

ever, that it follows from the misspecification bound that QF+(u)−∆ ≤ Q∗(u) ≤ QF+(u)+∆,

for every u ∈ (0, 1). Therefore, the region (5) may be seen as relying on these inequalities

to construct a conditionally valid confidence region for S. Since δ1,T0+h ∈ S, this ensures

conditional coverage of δ1,T0+h. Following the insight of Imbens and Manski (2004), smaller

prediction intervals could also be obtained by directly targeting coverage of δ1,T0+h. That

is, one could consider intervals [δ̂+1,T0+h − b, δ̂+1,T0+h − a] that ensure conditional coverage of

δ1,T0+h uniformly over misspecification |E[e1,T0+h|H]− ρhe1,T0| ≤ ∆. In this case, a and b

must satisfy:

P[δ̂+1,T0+h − δ1,T0+h ∈ [a, b]] ≈ F ∗(b− (E[e1,T0+h|H]− ρhe1,T0))− F ∗(a− (E[e1,T0+h|H]− ρhe1,T0))

≥ 1− α ,

where F ∗ is the distribution function of e1,T0+h − E[e1,T0+h|H]. This object depends on the

unspecified E[e1,T0+h|H]; however, it follows from the misspecification bound that F ∗(x) −
F ∗(y) ≥ F+(x − ∆) − F+(y + ∆). Therefore a feasible and smaller conditional prediction

interval for δ1,T0+h could be found by choosing a ≥ b that minimize the interval length b− a,

subject to:

inf
|d|≤∆

F̂+(b− d−∆)− F̂+(a− d+∆) = 1− α .

8



Finally, a distinction should be made between partially identified and misspecified set-

tings. Note that we are operating in an environment where δ1,T0+h is effectively point-

identified from the conditional on H distribution of observables. However, if we want to

adopt a parsimonious specification for E[e1,T0+h|H], such as the linear correction ρhe1,T0 ,

while still acknowledging the possibility of misspecification, then we effectively operate in

a setting where δ1,T0+h can only be bounded as a function of the conditional distribution

of observables (and the bound on the misspecification). In this case, tools from the partial

identification literature can be applied to conduct misspecification-robust inference.
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A Asymptotic unconditional coverage of (2)

Suppose that the distribution of (ϵ1,T0 , ϵ1,T0+h) is continuous, and that F̂+ is a pointwise

consistent estimator of F+. We show that the prediction interval (2) satisfies:

lim
T0→∞

P [δ1,T0+h ∈ [δ̂+1,T0+h −QF̂+
(1− α/2), δ̂+1,T0+h −QF̂+

(α/2)]] = 1− α .

To see this, note that, since F+ is continuous, pointwise convergence of F̂+ to F+ implies

uniform convergence (van der Vaart, 1998, p. 339). Lemma 21.2 of van der Vaart (1998)

thus implies that QF̂+
(ϵ)

p→ QF+(ϵ) for every ϵ ∈ (0, 1). It then follows by the continuous

mapping theorem that 1{δ1,T0+h ∈ [δ̂+1,T0+h−QF̂+
(α/2), δ̂+1,T0+h−QF̂+

(1−α/2)]} p→ 1{e1,T0+h−
ρhe1,T0 ∈ [QF+(α/2), QF+(1 − α/2)]}. Asymptotic coverage is then a consequence of the

bounded convergence theorem, since limT0→∞ P [δ1,T0+h ∈ [δ̂+1,T0+h − QF̂+
(1 − α/2), δ̂+1,T0+h −

QF̂+
(α/2)]] = P [e1,T0+h − ρhe1,T0 ∈ [QF+(α/2), QF+(1− α/2)]] = 1− α

B Sensitivity analysis in a location-scale model

We consider the case where
e1,T0+h−E[e1,T0+h|H]

sd(e1,T0+h|H)
is independent of H. This is a setting in which

correctly accounting for the conditional mean and variance would be sufficient to construct

a conditionally valid test.

Let ν ≥ 1 be a nonstochastic upper-bound for
sd(e1,T0+h|H)

sd(e1,T0+h)
and

sd(e1,T0+h)

sd(e1,T0+h|H)
, i.e. a constant

such that
sd(e1,T0+h|H)

sd(e1,T0+h)
∨ sd(e1,T0+h)

sd(e1,T0+h|H)
≤ ν almost-surely. Write σh for sd(e1,T0+h). Proceeding

as in the main text, we have that, for s ≥ −∆:

P [e1,T0+h − ρhe1,T0 ≤ s|H] ≤ P

[
e1,T0+h − E[e1,T0+h|H]

sd(e1,T0+h|H)
≤ ν(s+∆)

σh

]
≤ F+(∆ + ν2(s+∆)) ,

and, for s < −∆:

P [e1,T0+h−ρhe1,T0 ≤ s|H] ≤ P

[
e1,T0+h − E[e1,T0+h|H]

sd(e1,T0+h|H)
≤ (s+∆)

νσh

]
≤ F+

(
∆+

1

ν2
(s+∆)

)
.

Consequently, we obtain that, for any u ∈ (0, 1), Qe1,T0+h−ρhe1,T0 |H(u) ≥ Ω∆,ν(u), where

Ω∆,ν(u) =

ν2QF+(u)− (ν2 + 1)∆, if u < F+(∆)

1
ν2
QF+(u)−

(
ν2+1
ν2

)
∆, if u ≥ F+(∆) .

(6)

This can be used to construct a sensitivity region as follows. Suppose that, upon com-
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putation of prediction interval (3), the researcher finds an interval [a, b], with b < 0. She

would like to compute a set that contains the pairs (∆, ν) for which a correctly specified

conditional prediction interval that uses the true Qe1,T0+h−ρhe1,T0 |H(u) would, in a worst-case

scenario, contain 0. This set may be estimated by the pairs that satisfy:

b+ (QF̂+
(α/2)− Ω̂∆,v(α/2)) = δ̂+1,T0+h − Ω̂∆,v(α/2) ≥ 0 ,

where Ω̂∆,v is an estimator of (6) that replaces QF+ with QF̂+
. The lower contour for this

set can be computed by calculating, for every ∆ ≥ 0, the ν2 that solves:

b+ (QF̂+
(α/2)− Ω̂∆,v(1− α/2)) = 0 , (7)

and storing those pairs (ν,∆) such that ν2 ≥ 1. Notice that this calculation nests two partic-

ular cases. If we assume that ν = 1, meaning that there is no conditional heteroskedasticity,

we arrive from (7) at ∆∗ = −b/2, which is precisely the lower bound from the sensitivity

analysis in the main text. In contrast, if we assume that ∆ = 0, meaning that the condi-

tional mean is correctly specified, we arrive, for α/2 < F+(0), at ν =

√
b+QF̂+

(α/2)

QF̂+
(α/2)

. This

is the smallest amount of conditional heteroskedasticity, measured relatively to the uncon-

ditional standard deviation, required to change the conclusions of a conditional analysis in

a worst-case scenario. This quantity may also be interpreted as a sensitivity analysis in an

unconditional setting, where one believes the variance of e1,t may change after T0. In this

situation, ν quantifies the smallest change in the standard deviation, relatively to its pre-

treatment value, required to change the conclusions of the analysis in a worst-case scenario.

Finally, we note the sensitivity analsyses discussed in the main text and in this section

could be extended to accomodate the uncorrected estimator δ̂1,T0+h, as this may be seen as

a “corrected” estimator with correction equal to 0. In this case, sensitivity with respect to

the location quantifies how much the conditional mean should deviate from 0 to revert the

conclusions of tests.
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