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ABSTRACT. This note introduces a novel weighted local average treatment effect representation for
the two-stages least-squares (2SLS) estimand in the continuous instrument with binary treatment
case. Under standard conditions, we obtain weights that are nonnegative, integrate to unity, and
assign larger values to instrument support points that deviate from their average. Our representa-
tion does not require instruments to be discretized nor relies on limiting arguments, such as those
used in the definition of the marginal treatment effect (MTE). The pattern of the weights also has
a clear interpretation. We believe these features of the representation to be useful for applied re-
searchers when communicating their results. As a direct byproduct of our approach, we also obtain
a representation of the 2SLS estimand as a weighted average of treatment effects among “marginal
compliance” groups, without having to resort to the threshold-crossing representation underlying

the MTE construction. The latter representation has an intuitive interpretation as well.
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1. INTRODUCTION

Instrumental variable (IV) methods constitute one of the worhorses in the research toolkit of
applied economists (Angrist and Krueger, |2001; Imbens, 2014; Abadie and Cattaneo, 2018|). Since
the seminal work of Imbens and Angrist| (1994), henceforth A, it is well known that, in a po-
tential outcomes framework — and under exclusion, independence, relevance and monotonicity
assumptions —, the instrumental variable estimator with binary treatment and binary instrument
identifies a local average treatment effect (LATE) in the subpopulation whose treatment adoption
is affected by the instrument (compliers). This representation has been further extended to ac-
comodate discrete (Angrist and Imbens, |1995) and continuous (Angrist et al., [2000)) treatments.

Recent research on identification with instrumental variables methods in the potential outcomes
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framework has explored, inter alia, the nature of monotonicity assumptions under choice-theoretic
perspectives (Heckman and Pinto|, 2018; Mogstad et al., 2021); the interpetation of 2SLS estimands
under different approaches to controlling for covariates (Kolesar et al., 2013; Blandhol et al., 2022;
Stoczynski, 2022), and the interpretation of distinct weighting schemes underlying different IV
estimands (Mogstad et al., 2018} (Coussens and Spiess, 2021} Escanciano et al., [2023).

In this note, we revisit the interpretation of the 2SLS estimand in the case of a binary treatment
and continuous instrument. In this setting, applied researchers are often faced with two distinct
recommendations from the literature concerning the interpretation of 2SLS estimates. One branch
advises researchers to discretize their instruments (Angrist and Pischke, 2009, p. 139-140), in
which case available representations of IV estimands as weighted LATEs may be resorted to.
Another branch recommends results be interpreted as weighted averages of marginal treatment
effects (MTEs) (Heckman and Vytlacil, 2005; Heckman et all 2006]). These approaches have not
been unanimously adopted, though. First, the use of continuous (undiscretized) instruments is
quite common in the applied literature, as evidenced by the use of weather and distance-related
instrumental variables. Second, even though the threshold-crossing model that motivates the
definition of the MTE is known to be equivalent to the framework of TA (Vytlacil, 2002)); and that,
in the former, the MTE may be seen as a limit-form of the LATE; applied researchers are much
more accostumed with non-limit forms of the LATE, often going large ways in interpreting their

estimates as such, even in cases where such interpretation is not warranted (Blandhol et al.; 2022)).

This note aims to complement the literature by providing, to the best of our knowledge, a novel
(non-limit) weighted LATE interpretation of 2SLS estimands in the continuous instrument cum
binary treatment case. We provide conditions under which a class of Wald estimands that nests
2SLS as a particular case may be interpreted as a weighted-average of complier treatment effects,
where compliance groups are defined with respect to treatment status at the (conditional on con-
trols) average instrument value. The weights are nonnegative, integrate to unity, and assign larger
values to instrument support points that deviate from the (conditional on controls) average. As
we argue below, such patterns lead to weighted averages with an intuitive interpretation. Our
results are derived under the same set of assumptions of TA (also |Angrist et al., |1996]), which we
couple with the requirement that, in the specification adopted, covariates are controlled for in a
sufficiently flexible manner. The latter restriction is known to be sufficient, under the TA assump-
tions, for 2SLS estimands to produce nonnegative weights (Blandhol et al., 2022)). We further show
that, as an immediate byproduct of our representation result, we obtain a representation of our
class of Wald IV estimands in terms of “marginal compliance” groups, without having to resort to
the the threshold-crossing model that generates the MTE representation. These weights also have
an intuitive interperation, assigning larger values to compliers for which there is more variation

available to estimate effects.
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The remainder of this note is organized as follows. Section [2 introduces the class of Wald
estimands considered and presents the representation result. Section 3| concludes. The Online
Appendix contains the proof of the main result, as well as an extension of our representation to
an alternative 2SLS estimand, a discussion on how to estimate the underlying weights of each

representation, and a comparison with the approach of discretizing instruments.

2. WEIGHTED LATE REPRESENTATION OF A CLASS OF WALD ESTIMANDS UNDER A
CONTINUOUS INSTRUMENT

Suppose the researcher is interested in assessing the causal effect of a binary treatment D € {0, 1}
on an outcome Y. The researcher has access to a continuous scalar instrument 7, and a set of
controls X. We assume that second moments of Y and Z exist. We consider a Wald estimand
which aims to estimate the causal effect of D by leveraging covariation between Z and D, after

partialling out covariation between Z and X. This estimand is given by:

_E(Z- g (X))
= Bz~ g (X)D]° W

where ¢g* is the Lo(PP) projection of Z on a space G of scalar functions of X with finite second

moment, i.e.

g" € argmin,eg E[(Z — g"(X))?]. (2)

The Wald estimand explores variation of Z after controlling for potential confounding due to
X. These variables may be controlled for in a possibly nonlinear manner, for example by functions
g € G that vary nonlinearly in X. As a special case, if one considers a transformation p from X to
R*, and takes G = {7'p(-) : v € R¥}, then an application of the partitioned inverse formula shows
that Swaa is equal to the 2SLS estimand of 3 in the linear system:

D=aZ++p(X)+u

e ®)
Y =pD+uwp(X)+wv

We consider the interpretation of in a potential outcomes framework. Following A (also

Angrist et al} 1996)), we assume that:

Assumption 1. We assume that:

(1) Potential treatments: observed treatment status is given by D = D(Z), where D =
{D(z) : z € Z} are the potential treatment statuses associated with different values of the

instrument, with Z C R denoting the instrument support.



(2) Potential outcomes: observed outcomes are given by Y = DY (1,Z) + (1 — D)Y (0, 2),
where Y (d, z) are the potential outcomes associated with treatment status d € {0,1} and
instrument value z € Z.

(3) Exclusion restriction: for each d € {0,1}, Y(d,2) =Y (d,2') =Y (d) Vz,2' € Z.

(4) Conditional independence: conditionally on X, Z is independent of {Y (0),Y (1), D}.

(5) Monotonicity: either P[D(z) < D(2')] =1 for every z,2 € Z with z < Z'; or P[D(z) >
D(Z)] =1 for every z,72 € Z with z < 2.

The next proposition is our main result.

Proposition 1. Suppose Assumption (1| holds. Let 1(X) be a version of E[Z|X]. In addition,

suppose the following conditions hold:

(1) Support condition: the support Z is given by [z,Z|, where z,Z € RU {—00, c0}.
(2) Moments: Y (1),Y(0) and Z have finite second moments.

(3) Relevance: E[(Z — g*(X))D] # 0.

(4) Flexible specification: i) € G.

We then have that the estimand 15 well-defined, and that:

ﬁWald = E[w<X7 Z)A<X7 Z)} )

where

Az, 2) = E[Y(1) = Y(0)|X = =, D(2) # D(¥())],

w(z,z) 7,
= Blxz) Wih:

and w(x, z)

wiz,z) = |2 — v(@)P[D(z) # DW())|X = 1.

Proof. See Online Appendix [A] O

Proposition |1| shows that, under the stated assumptions, the Wald estimand may be writ-
ten as a weighted average of complier treatment effects. In the representation of Proposition []
compliance is defined with respect to potential treatment status at the average instrument value
E[Z|X = x], with weights being attached to average treatment effects in subpopulations that would
change their treatment status upon being offered a shift of instrument value from E[Z]|X = z] to
z, for different values of z € [z,Z]. The weights in the representation are nonnegative and average
to unity. Moreover, due to the monotonicity assumption, the weights w(x, z) are nonincreasing in
z for z < E[Z|X = z] and nondecreasing in z for z > E[Z]|X = z]|. Consequently, the weighted

average assigns larger weights to more extreme values of z.
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The representation in Proposition (1| hinges crucially on the interval support assumption on
the instrument, as it ensures that the potential treatment status at the average E[Z|X = z]
is well-defined. In addition, we note that, since the representation uses a (conditional on X)
fixed reference potential treatment status in defining compliers, it may be easier to interpret than
varying-reference-level ones (Cornelissen et al.l 2016). To see this point, first note that our fixed-
level representation involves overlapping subpopulations. Indeed, for any 2’ > z > i(z), A(z, 2’)
includes in its average all compliers averaged in A(z, z); the same holding true for 2’ < z < ¥(z).
Since more extreme values of the instrument are precisely those assigned larger weights in the
representation, it follows that the representation assigns larger weights to the most encompassing

complier subpopulations, a useful feature in the interpretation of results.

In spite of the attractiveness of our representation, it should be noted that, in some settings, it
may be also useful to interpret the estimand as a weighted average of treatment effects in disjoint
subpopulations. As we show below, one immediate corollary of Proposition [1] is a representation
of in terms of nonoverlapping “marginal compliance” groups. Interestingly, our result follows
without having to resort to the threshold-crossing representation that motivates the MTE, which

may be a further useful feature for applied researchers in communicating their empirical results.

In what follows, define the marginal compliance group of an individual as the variable C' that

equals c if:

ligl D(z) # D(c),

i.e. C is the smallest instrument value required for an individual to change her behavior. If the

individual is not a complier, we set C' = &.

Corollary 1. Suppose that the Assumptions required in Proposition hold. Suppose that C|X,C #

@ admits a reqular conditional Lebesque density fax<"')' We then have that:

Bwald = //Z w*(z,c)A*(z, c) de Px(dx),
where )

A*(z,c) =E[Y(1) =Y (0)|X =2,C =,
, with

. - w* (z,c)
and w*(z,c) = J JZ w*(a,b) db Px(da)

El|Z = (@) {Z < }|X = alfex(clx),  if ¢ <o(x)
EllZ = (@) 1{Z = c}|X = 2] fex(clx), if ¢ = (x)

w(z,c) =

Proof. Note that

E[(Y(1) = Y(0)1{D(z) # D(¢(x)) }| X = 2] = / Az, c)l{c e [z,9(2)] U [9(z), 2]} fe(cz)de.

z



The conclusion then follows from Fubini theorem. O

The weights w*(z, ¢) in the representation of Corollary [I| depend on two quantities. First, they
are proportional to fa «(c|z), which reflects the mass of marginal compliers at value ¢, in the

subpopulation defined by X = z. Second, they depend on:

E[|Z —¢(2)]1{Z < c}|X =z], if c < ¢(x)
k(clx) = :
ElZ = ¢(2)[1{Z = ¢}|X = 2], if ¢ = ()

Notice that, for each z, the function ¢ — k(c|x) is nondecreasing in ¢, for values ¢ < ¥(x),
and nonincreasing in ¢, for values ¢ > ¥(z). Therefore, the term r(c|z) assigns larger values the
closer ¢ is to ¥ (x). This pattern reflects the fact that marginal compliers at i(z) are precisely
those for which the most “variation” is available to estimate effects. Indeed, notice that, for a
marginal complier with C' = ¢, instrument values z > ¢ induce the individual to take an action,
whereas values 2z’ < ¢ induce the opposite action. If the distribution of Z|X is symmetric, ¢(x)
coincides with the median of the conditional distribution, and ¢ (x) maximizes the mass of available
comparisons (z, z') by exactly balancing the available points below and above itH More generally,
the average compliance point C' = ¢(z) is precisely the one that balances a weighted measure of
available points below and above it, as captured by the fact that fj(z) |z — ()| fzx (2]x)dz =
ff(x) |Y)(x) = 2| fz)x (2|x)dz. This interpretation of the underlying weights assigning higher values to
sabpopulations where it is “easier” to estimate effects, in the sense of there being more available
variation, is similar to existing results for linear regression in selection-on-observables settings
(Angrist, [1998; Angrist and Pischke, 2009; |Goldsmith-Pinkham et al., 2024).

Remark 1 (Connection with Theorem 2 of TA). Consider a setting where we only include an
intercept among the controls (in which case we take G = R), and that Z is discretely supported,
with K support points ¢; < ¢3 < ... < c¢k. In this case, Theorem 2 of IA applies, and we obtain

the following representation for the Wald estimand:

Yy @BV (1) - ( )[D(cri1) # Dcr)]
>t Wi

where wy = |P[D = 1|Z = ¢;41] —P[D = 1|Z = &]|E[(Z —E[Z])1{Z > ¢;}]. By noting that, under

the monotonicity assumption, |P[D = 1|Z = ¢x41] — P[D = 1|Z = ¢;)| = P[D(ck41) # D(ck)], and

that, for ¢y < E[Z], E[(Z — E[Z])1{Z > ¢ }] = E[|Z — E[Z]|1{Z < ¢ }], we conclude that the TA

weights may be rewritten as:

: (4)

ﬁ Wald —

ITo see this, note that the mass of available comparisons fj f; fz1x (¢'|2) f7)x (2]x)d2'dz is maximized at the

choice 1* such that ff* fz1x(¢|x)dz" = fj fz1x(z|z)dz, i.e. the median.



PID(crr) # D ENZ ~ EIZIUZ <), if o <E2)
P[D(cxs1) # D(e)E[|Z — E[Z][H{Z 2 ¢,}], if ¢, > E[Z]

WE =

This shows that, in the case without covariates, the representation in Corollary [1| may be seen
as a continuous counterpart of representation . Indeed, in a “heuristic limit” where the number
of support points K becomes dense in an interval [z,Z] of the real line, one would expect
to converge to our non-overlapping representation. Corollary [I] makes this argument precise, by
properly defining what a complier is in the continuous case and offering a formal proof of the
non-overlapping representation without relying on “heuristic limits”, while also extending the

representation to a class of Wald estimands that allows for the inclusion of covariates.

Remark 2 (On the version of the monotonicity assumption). We derive Proposition |I| under the
requirement that the sign of the monotonicity be the same across the support of X. This contrasts
with a weak monotonicity assumption (Stoczynski, 2022), whereby the direction of the monotonicity
may vary across the different subpopulations defined by the values of X. In the binary (discrete
scalar) instrument setting, [Stoczynski (2022) (Blandhol et al., 2022, Proposition 10) show that,
for 2SLS estimands of the system to identify weighted averages of LATEs with nonnegative
weights, the weak monotonicity assumption is not sufficient, whereas our stronger version is. This
insufficiency is essentially due to the “inflexibility” of the first-stage of , which does not allow
the sign of the relation between Z and D to vary with X. In the discrete X setting, a “saturate-
and-weight” strategy (Angrist and Pischke, 2009), which consists of running 2SLS with a full set
of dummies for every support point of X while also overidentifying the first-stage by including as
instruments the interacton between each of these dummies with Z, is known to produce a weighted
average of LATEs with nonnegative weights under weak monotonicity and a binary instrument.
Online Appendix [B| shows the same is true in the continuous scalar instrument setting: we are
able to obtain both overlapping and non-overlapping representations for the saturate-and-weight

estimand under the weaker monotonicity requirement.

Remark 3 (On the role of the flexible specification assumption). Proposition [1|is derived under the
requirement that the function class G is flexible enough so as to contain the conditional expectation
function E[Z|X = z|. It has been shown that this assumption is sufficient, in the IA setup, for
2SLS estimands of the system to be represented as weighted averages of complier treatment
effects with nonnegative weights (Blandhol et al., [2022). In the case that X has a finite number of
support points, the assumption is satisfied by relying on a saturated G, i.e. by considering p(X)
as a vector of indicator functions of all possible values x in the support of X. In settings where X
is more complex, e.g. it contains continuous entries or a finite but very large number of support
points, it may be preferable to rely on machine-learning methods that estimate representation ([1
while flexibly controlling for X (Belloni et al., [2012; Chernozhukov et al., [2018).
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Remark 4 (Estimation of the weights). In Online Appendix , we discuss how the underlying
weights in both representations may be estimated, which may be a useful tool for applied re-
searchers in understanding which subpopulations receive larger weights in their target estimand.
We also show how an estimator of the conditional probability function P[D = 1|7, X]|, which is
required in the computation of the weights, may be used for testing an implication of the mono-

tonicity hypothesis in Assumption [1}

Remark 5 (Comparison with discretization of continuous instruments). Online Appendix@ com-
pares the estimand discussed in the main text with those obtained from discretizing a continuous
Z and using as instruments the indicators for the discretized support points. While, in the case
without covariates, the latter approach enables the researcher to be agnostic about the encoding of
Z that ensures the validity of the monotonicity hypothesis in Assumption [I these benefits may be
outweighed in settings with covariates, where the researcher would have to saturate and interact
X with the dummies for the discretized Z (and use these interactions as instruments) to ensure
a representation with nonnegative weights. When this approach results in many instruments, the
researcher may incur in estimation and inference problems. In contrast, we note that it is always
possible to ensure the “correct” (monotonicity-ensuring) recoding of Z by using a flexible estimator
of v(Z) = P[D = 1|Z] as the instrument.

3. CONCLUSION

This note introduces a weighted LATE representation for the 2SLS estimand in the binary
treatment with continuous instrument case. We have shown our non-limit representation has an
intuitive interpretation. As a direct byproduct of our representation, we have also obtained a
weighted LATE representation in terms of non-overlapping, marginal compliance groups. This
alternative representation also has an intuitive interpretation. In the Online Appendix, we further
show how the weights in both representations may be estimated, which may be a useful tool for
applied researchers seeking to communicate which compliers are assigned larger weights by their

estimand.
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ONLINE APPENDIX OF “THE INTERPETATION OF 2SLS WITH A CONTINUOUS INSTRUMENT: A
WEIGHTED LATE REPRESENTATION”

APPENDIX A. PROOF OF PROPOSITION (1]

Without loss of generality, we consider the monotonicity assumption in the direction P[D(z) <
D(Z")] = 1 for every z < 2/. Otherwise, we can redefine the instrument as Z* = —Z and the

following proof would also apply.

First, we note that, by the moment and relevance assumptions, the numerator and denominator

of Bwaa are well-defined. Next, we observe that the numerator is given by:

E[(Z - g"(X))Y] =
E[(Z = g"(X))Y(0)] + E[(Z — g (X)) D(Y (1) — Y(0))]
E[(Z — g*(X))E[Y (0)[X]] + E[(Z — ¢"(X)) DY (1) = Y(0))],

where the last equality uses iterated expectations, followed by the independence assumption. Now,

it follows from the flexible specification assumption that g* = ¢, from which we have that E[(Z —
9" (X))E[Y (0)|X]] = 0.

As for the second term, we note that, for support points (z, z):

E[(Z —g"(X))DY (1) =Y (0))|Z = 2, X = 2] =

(z = ¥(2))E[D(2)(Y(1) = Y(0)[X = 2] =

(z = (2)E[(D(2) = D((2)))(Y (1) = Y(0)[X = z]+
(z = ¢ (@))E[D((2)) (Y (1) = Y(0)[X = ],

where the last equality added and subtracted D(v(x)) inside the expectation. Observe that, for
Px-almost every z, D(¢(z)) is well-defined, since P[¢)(X) € [z,Z]] = 1. Now, suppose z > (). I
D(

this case, by the monotonicity assumption, D(z) — D(¢

(x)) takes either value 0 (always- or never-
taker in the comparison between instrument values ¥(z) and z), or 1 (complier). Consequently, in

this case:

(z = ¥ (@))E[(D(2) — D(¢()))(Y (1) = Y(0)[X = 2] =
(2 = ¢(2)) P[D(2) # D(¥(2))|X = 2]E[Y (1) = Y(0)|X = =z, D(2) # D(¥(2))].

———
=lz—=¢ ()|

Symmetrically, if z < ¥(z), D(z) — D(¢(x)) takes either value 0 or —1, with the latter corre-

sponding to compliance at the comparison between instrument values ¢ (z) and z. Consequently,



we have that, in this case:
(2 = (@)E[(D(z) — D((@))(Y(1) = Y(0))|X = a] =
—(z = ¥(2)) P[D(2) # D(¥(x))|X = z]E[Y (1) = Y(0)|X =z, D(2) # D(¢(x))]
=lz—9(z)]

Combining the above results, and using that, for {(z) = E[D(¢¥(x))(Y (1) — Y(0))|X = =z,
E[(Z —¥(X))£(X)] = 0, we have that:

E[(Z — ¢"(X))Y] = Elw(X, 2)A(X, Z)].

A similar argument then shows that the denominator of Swaq is equal to Elw(X, Z)], which

proves the desired result.

APPENDIX B. REPRESENTATION FOR THE SATURATE-AND-WEIGHT STRATEGY

We consider the case where the support of X is discrete, and p(X) consists of a set of dummies
for every support point of X. In this case, the “saturate-and-weight” (SW) estimand is given by
the 2SLS estimand £ of the system:

D = ¢'(Zp(X)) +'p(X) +u
Y =BD+uwp(X)+v
Note that, due to the saturated and interacted nature of the first stage, the Lo(IP)-projection of
D onto Zp(X) and p(X), which we denote by Lp(Z, X), is such that, for every support point z,
Lp(Z, ) is equal to the Lo-projection of D onto an intercept and Z, in the subpopulation defined
by X =z, ie. Lp(Z,X)=a(X)+b(X)Z, where a(z) and b(z) are the intercept and slope of the
Lo(P)-projection onto an intercept and Z in the subpopulation with X = z.

Next, we note that, by the mechanics of 2SLS and the Frisch-Waugh-Lovell theorem that:

E[Y(Lp(Z,X) — Lp(Z, X))
E[(Lp(Z, X) = Ln(Z,X))?]
where Lp(Z, X) is the Ly(PP)-projection of Lp(Z, X) onto p(X). Since p(X) is saturated, this
coincides with the conditional expectation of Lp(Z, X) given X, i.e. Lp(Z,X) = E[Lp(Z, X)|X] =
a(X) + b(X)E[Z|X]. Consequently, we have that:

BSW =

sy = EVOX)(Z — E[Z)X))]
EB(X)(Z ~ BIZIX])
E[fhy (X)b(X)*V[Z]X]
EP(XPVIZIX]




) — EY(EZ-E[ZIXPIX] _ cov(Y.Z]X)
b(X)V([Z[X] cov(D,Z|X)"

2SLS estimand, in the subpopulation defined by X = x, of the system.

where Sy (X Notice that, for each x, Brv(z) corresponds to the

D=a,+b,7Z+v

, (7)
Y =a,+08.D+¢€

Consequently, if the Assumptions required by Proposition [I| hold in the subpopulation de-
fined by X = x (notice from that, once we condition on this subpopulation, we are effectively
considering a setting where the controls only include an intercept, i.e. G = R), then the representa-
tions in Proposition and Corollary hold for Sy (x). If the conditions hold in every subpopulation
defined by X = z, for every z in the support of X, we may plug the resulting representations of
Prv(z) onto @ to obtain a weighted LATE representation of the saturate-and-weight estimand.
Importantly, since we require a representation to be valid separately for each subpopulation TV
estimand Sy (z), for every support point z of X, the direction of the monotonicity may vary across
subpopulations. The outer weights that aggregate across different values of X are proportional
both to the square of the strength of the subpopulation first-stage, as captured by the subpopula-
tion slope b(X), as well as proportional to the conditional variance V[Z|X]. Both features indicate
that the saturate-and-weight estimand attaches larger weights to subpopulations defined by the

support points of X where the subpopulation IV is easier to estimate.

APPENDIX C. ESTIMATION OF THE WEIGHTS

Suppose the researcher has access to a sample {Y;, X;, Z;, D;}* , from the model described in
Section [2| of the main text. She may be interested in estimating the weights w(z, z) and w*(z, ¢),
so as to have a better understanding of which complier subpopulations are assigned larger weights
in the representation. To estimate w(x, z), the researcher must have an estimator 7,@ of v, the
Lo(P)-projection of Z on X. For the 2SLS estimands of system in the main text, this may be
implemented by setting ¢(X) = 6'p(X), where 6 is the estimated coefficient of a linear regression
of Y; on p(X;). More generally, 1& will be the estimator the researcher uses when estimating the
parameter in the main text, e.g. by considering the sample analog of the minimisation problem
given by equation [2| in the main text, with the possible inclusion of a regularizing penalty if the
complexity of G is large. The researcher also requires an estimator of P[D(z) # D(¢(x))|X = z].
Observe that, by the monotonicity hypothesis in Assumption in the main text, this quantity
is equal to |[P[D = 1|Z = 2, X = 2| —P[D = 1|Z = ¢(x),X = z||. Therefore, given a flexible
estimator 7(z, z) of the conditional probability function P[D = 1|Z = 2, X = x|, the weights
w(z, z) may be estimated, in the sample points (X;, Z;), as

b(X0), X0lIZ: = 9(X)
O, X125 — 9 (06G)]

T(Zi, Xi) =7 :
7 ))T( i=1,...,n.

w2725, X



As for the weights w*(z, ¢), observe that k(c|z) = E[(Z — ¢(x))1{Z > c¢}| X = z|. Let &(c|x) be
an estimator of x(c|z), e.g. the prediction at X = z from a linear regression of (Z; —(X;))1{Z; >
¢} on a vector of transformations of X;. Next, note that, by the monotonicity assumption in
Assumption PID=1Z=2,X=2]-PD =17 =2X =1z] = f:l f&x (clz)de for any
2! > z. Consequently, if we rely on an estimator 7(z, z) that is differentiable in z, and given a grid

of K points ¢; < ¢ < ... < cg, we may estimate the weights as:

5 (Zsycn) = Alekl Xi) | 57 (cr, Xo)|
P LS SR el Xg) [ 24 (e, X5)|
nK j=1 =1 7710 )

Remark 6 (Testing the monotonicity assumption). The estimator of the conditional probability

Ck7

function P[D = 1|Z, X] may be used to test an implication of the monotonicity hypothesis in
Assumption |1l To see this, note that an implication of this version of the monotonicity hypothesis
is that the random function z — P[D = 1|Z = z, X] is either nondecreasing with probability
one or nonincreasing with probability one. This implication is testable. Indeed, if one adopts
a smooth parametric form P[D = 1|Z, X| = A(¢(T(Z, X)), where A is a differentiable function
with A’(u) > 0 for every u € R, and T'(Z, X)) is a vector of continuous transformations of (Z, X)
differentiable in Z, then the implication is equivalent to: ¢ 9 ~T(z,2) > 0 for every support point
(z,2) of (Z,X), or ¢y LT (2,2) < 0 for every support point (z,z) of (Z, X). These restrictions
can be tested by constructing a uniform confidence band for the function (z,z) — ¢{2T(z, ).
Freyberger and Rai| (2018]) provide a general method for constructing such confidence band, when a
consistent and asymptotically normal estimator of ¢ is available. If the band contains at least one
nonpositive or nonnegative function, then we do not reject the null that the testable implication
holds at one minus the confidence level of the band. If the band only contains functions whose
sign does not change across (z,z), i.e only nonnegative or nonpositive functions, then we reject

the null that the implication does not hold at at one minus the confidence level of the band.

APPENDIX D. COMPARISON OF THE APPROACH IN THE MAIN TEXT WITH DISCRETIZATION OF
CONTINUOUS INSTRUMENTS

Consider the case where the instrument is discretely supported, with unordered support points
{z1,...,2K}. Suppose that the monotonicity assumption holds for some ordering of the instru-
ment, which is unknown. In the case without covariates, Angrist and Imbens| (1995) show that the
2SLS estimand that uses the full set of dummies 1{Z = z,}, j = 1,..., K, as instruments identi-
fies a weighted average of LATESs, without having to take a stance on the correct (monotonicity-
ensuring) ordering of the points. This suggests that, in some settings without covariates, dis-
cretizing and then saturating a continuous instrument may be advantageous, as it would allow the
researcher to be agnostic about the correct order ensuring monotonicity, whereas Assumption [1}in

the main text requires Z to be encoded in a way such that potential treatment statuses z — D(z)



are either almost surely monotone nonincreasing or almost-surely monotone nondecreasing in z.
These benefits do not directly extend to specifications that control for covariates X, though. In-
deed, in a discrete unordered instrument setting with controls, |Blandhol et al. (2022) argue that,
either the researcher has to saturate-and-weight X, interacting the indicators for the support points
of X with the dummies for the support points of Z (and using these interactions as instruments),
or the researcher should recode Z so as to reflect the monotonicity-ensuring order in D, and then
consider estimation of the system with a scalar instrument as in (3)). If the researcher does not
proceed in either way, then some of the underlying weights in the LATE representation of the es-
timand may be negative. From the estimation viewpoint, the saturate-and-weight strategy, which
only works for discrete/discretized X, may generate a many-weak instruments problem (Miku-
sheva and Sun, 2021)). In contrast, we note that, if the monotonicity hypothesis in Assumption
holds for some unknown recoding of Z, then, by taking v(Z) = P[D = 1|Z] as the instrument, we
automatically obtain the monotonicity-ensuring encodingﬂ This suggests that the undiscretized
approach discussed in the main text is often appropriate, provided that we correctly encode Z

(which possibly involves estimating v in a flexible way).

2This idea is originally discussed in page 470 of IA.
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