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Abstract. L-moments are expected values of linear combinations of order statistics that provide

robust alternatives to standard moments. The estimation of parametric density models by match-

ing sample L-moments is known to outperform maximum likelihood estimation in small samples

from several distributions. Recently, it has been further shown that, by varying the number of

L-moments with sample size and weighting these acoordingly, one is able to construct an estimator

that outperforms MLE in small samples, and yet does not underperform asymptotically. Methods

to automatically select the number of L-moments have also been developed. Given their good

statistical properties and computational simplicity, it is expected that extending L-moment-based

approaches to estimation to semi- and nonparametric settings may be able to produce computa-

tionally convenient estimators with good statistical properties. In this paper, we undertake this

task by extending the L-moment approach to the estimation of semiparametric models of treatment

effects in randomised trials. Recently, Athey et al. (2021) introduced semiparametric models as

a convenient tool for the analysis of experiments with heavy-tailed data. We show that, in their

setting, a “plug-in” L-moment estimator produces an efficient estimator without requiring further

corrections. For flexible parametrisations of treatment effects, our estimator is also computation-

ally acttrative, as it can be obtained by solving a quadratic program. We also discuss how to

perform specification testing, moment selection, and how to motivate specific parametric forms.

As an application, we apply our methods to a randomised experiment conducted by a large car-

hailing service in São Paulo, which randomised discounts to some of its active users. The goal of

the experiment was to understand whether short-run changes in the prices of car rides starting or

ending at train stations could lead to long-run changes in the demand for public transportation due

to learning effects. For the largest discounts randomised, we observe large effects on bimodal rides

during the weeks the discount was in place and no effects thereafter. As for unimodal (car-only)

rides, we observe a negative effect after the discount is over, which persists over more than a month.

We introduce a simple learning model that is able to rationalise these results.
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1. Introduction

Introduced by Hosking (1990), L-moments are expected values of linear combinations of order

statistics that provide robust alternatives to standard moments. The estimation of parametric

density models by matching sample L-moments – a procedure known in the literature as “method

of L-moments” –, has been shown to outpeform maximum likelihood estimation in small samples

from several distributions.1 The number of L-moments is typically set equal to the dimension of

the parameter space, though, which leads to inefficient estimators in larger samples. Recently,

Alvarez et al. (2023) have shown that, by varying the number of L-moments with the sample

size and weighting these properly, one is able to construct a “generalised method of L-moments

estimator” that is able to outperform maximum likelihood estimation in small samples, and yet

preserve asymptotic efficiency. The latter fact is due to a convenient property of L-moments, first

discussed in Hosking (1990): L-moments characterise distributions with finite first moments, a

property not generally enjoyed by standard moments (Billingsley, 2012, Example 30.2). Alvarez

et al. (2023) then provide two methods to automatically select the number of L-moments used in

estimation: one method based on higher-order expansions of the target-estimand, which are used

to compute a high-order mean-squared error that is then minimised by choosing the appropriate

number of L-moments; and another method based on ℓ1-regularised estimation of the optimal

moment weighting matrix. The authors verify the finite sample gains of both approaches in Monte

Carlo simulations.

Given the attractiveness of L-moments both from computational and statistical viewpoints, it

appears fruitful to understand whether L-moment-based approaches are able to produce statisti-

cally efficient estimators in semi- and nonparametric contexts where semi/nonparametric maximum

likelihood may be computationally prohibitive. In this paper, we undertake this approach in one

such setting. Recently, Athey et al. (2021) introduced semiparametric models as a convenient tool

for the analysis of randomised experiments. As argued by the authors, in several settings – espe-

cially in randomised experiments conducted by tech companies –, outcomes are heavy-tailed, and

treatment effects, even if small, may be of economic interest. In these settings, a standard com-

parison of means tends to perform poorly, and sensible parametric restrictions on the treatment

effect distribution, whilst still leaving the control group distribution unspecified, may entail large

efficiency gains by reducing the model’s efficiency bound. In light of these expected gains, Athey

et al. (2021) propose efficient estimators of semiparametric models of treatment effects. These

estimators are obtained by adding a cross-fitted estimate of the model’s efficient influence function

to a first-step estimator. In contrast, we show that, in the same setting of Athey et al. (2021), a

“plug-in” version of the parametric L-moment estimator of Alvarez et al. (2023) is efficient with-

out requiring further corrections. Moreover, for flexible parametrisations of treatment effects, our

1Examples include the generalised extreme value, generalised Pareto and generalised exponential distributions.

See Alvarez et al. (2023) and references therein.
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proposed estimator can be obtained by solving a quadratic program, which is quite convenient

from the computational viewpoint. We also propose a specification test based on overidentifying

restrictions and briefly discuss how to select the L-moments used in estimation.

As an application, we use our method in estimating treatment effects in a randomised experiment

conducted by a car-hailing service in São Paulo. The experiment provided short-term discounts

to rides starting on or ending in subway/train stations. The goal of the experiment was to un-

derstand whether short-term changes in prices could lead to long-run changes in the demand for

public transportation due to learning effects. Our semiparametric specifications allows us to bet-

ter estimate treatment effects and, as a consequence, to draw sharper inferences. For the largest

randomised discounts, we find a strong substitution effect away from unimodal (“car-only”) rides

after the discount expires, and no effects on bimodal rides after the discount expires. Even though

such effects could be interpreted as a large substitution effect – coupled with the assumption that

there is low downward-substitutability in bimodal rides –, the magnitude of the substitution and

their persistence over a month after the discount is over appears to be better interpreted through

the lenses of a simple learning model, which we introduce in Appendix C.

The remainder of this paper is organised as follows. Section 2 briefly reviews the estimation of

parametric models by means of L-moments as discussed in Alvarez et al. (2023). In Section 3, we

introduce the setting of Athey et al. (2021) and discuss the properties of our proposed estimator

in this setup. Section 4 presents the results of our empirical application. Section 5 concludes.

2. Parametric estimation with L-moments

For a distribution function F on the real line with quantile function QF , Hosking (1990) defines

the r-th L-moment as:

λr =

∫ 1

0

QF (u)P
∗
r−1(u)du , (1)

where P ∗
r (u) =

∑r
k=0(−1)r−k

(
r
k

)(
r+k
k

)
uk are shifted Legendre polynomials.

Suppose F belongs to a finite-dimensional parametric family {Fθ : θ ∈ Θ}, Θ ⊆ Rd, i.e. F = Fθ0

for some θ0 ∈ Θ. Given a sample Y1, Y2, . . . , YT from F , Hosking (1990) proposes estimating θ0 by

finding θ such that the first d “theoretical” L-moments, λr(θ) =
∫ 1

0
QFθ

(u)P ∗
r−1(u)du, r = 1, . . . d,

coincide with sample estimators of the d first L-moments of F . This procedure, which has been

labelled “method of L-moments” (MLM) in the literature, has been shown to outperform maximum

likelihood estimation (MLE) in small samples from popular distributions, such as Generalised

Pareto (GPD) and Generalised Extreme Value (GEV). In light of that, MLM has been used in

areas as diverse as Computer Science, Hydrology, Meteorology and Finance (see Alvarez et al.

(2023) and references therein).

In Alvarez et al. (2023), it is shown that, by using more than d L-moments and weighting

the additional overidentifying restrictions accordingly, one is able to construct an estimator that
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improves (in a mean-squared error sense) upon both MLE and the conventional MLM approach in

finite samples, and yet works as well as MLE asymptotically. The intuition for the latter is that,

contrarily to standard moments, L-moments characterise distributions with finite first moment

(Hosking, 1990, Theorem 1).2 The latter result also stands in stark contrast with the standard

MLM approach, which is known to be, in general, asymptotically inefficient. Specifically, Alvarez

et al. (2023) consider the following estimator:

θ̂ ∈ argminθ∈Θ

(∫ 1

0

(Q̂Y (u)−QFθ
(u))PR(u)du

)′

WR

(∫ 1

0

(Q̂Y (u)−QFθ
(u))PR(u)du

)
, (2)

where Q̂Y (·) is the empirical quantile functon, PR(u) = (P ∗
0 (u), P

∗
1 (u), . . . , P

∗
R−1(u))

′, and WR is a

R×R symmetric weighting matrix. The authors then derive the asymptotic properties of this esti-

mator in a setting where both R, T → ∞. This allows them to find the optimal choice of weighting

matrix WL, and show that, asymptotically, it leads to a
√
n-asymptotically normal estimator with

variance equal to the inverse Fisher information matrix. They then propose methods to automat-

ically select the number of L-moments R in finite samples. These are based on: (i) higher-order

expansions of the mean-squared error of the target estimand; or (ii) ℓ1-regularised estimation of

the weights WR, which implicitly performs moment selection. They verify the gains associated

with their proposed approach in Monte Carlo simulations with GPD and GEV distributions.

3. Semiparametric analysis of randomised experiments

Consider a setting where there is an outcome of interest Y and a binary treatment D ∈ {0, 1}.
For a population of interest, we define the random variables (Y (0), Y (1)) as the potential out-

comes (Imbens and Rubin, 2015), where Y (d) specifies what would occur if a subject randomly

drawn from the population is assigned treatment status D = d.3 The distribution of (Y (0), Y (1))

reflects the distribution of potential outcomes in the population. The distribution of treatment

effects in the population is given by τ = Y (1)− Y (0); and the average treatment effect is given by

β := E[Y (1)− Y (0)]. We consider the goal of experimentation to be to conduct inference on β.

In randomised experiments, a random sample of N individuals is drawn from the population;

and treatment is assigned randomly to N1 individuals, independently from their potential out-

comes. Denoting by Di the treatment status indicator of the i-th individual in the sample, we

2As is well known, standard moments characterise distributions only in limited settings (see Billingsley, 2012,

Example 30.2, for a setting where the characterisation does not hold).
3Underlying this definition of potential outcome is a non-interference assumption, which postulates that the

treatment status of an individual depends only on her assignment, and not on the treatment status of the remaining

individuals in the population. The analysis of experimental (and observational) studies under different patterns of

interference – where there can be spillovers from one unit’s status to the other –, is an active topic of research in

Statistics. See Sävje et al. (2021) and references therein.
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have that the observed outcome is Yi = Di ·Yi(1)+(1−Di) ·Yi(0), where, by the sampling assump-

tion, (Yi(0), Yi(1))
iid∼ (Y (0), Y (1)). The researcher observes a resulting sample {(Di, Yi)}Ni=1. The

fundamental problem of causal inference is that the researcher does not observe both po-

tential outcomes (Yi(0), Yi(1)) simultaneously, so individual effects τi = Yi(1)− Yi(0) are generally

unidentifiable. It is possible however, to estimate the average treatment effect by:

β̂ =

∑N
i=1DiYi
N1

−
∑N

i=1(1−Di)Yi
N0

(3)

i.e. a comparison of means between treatment and control units. Under random assignment of the

treatment, this estimator is unbiased for β, and its variance is given by V[Y (0)]/N0 +V[Y (1)]/N1.

Is β̂ the “best” we can do in randomised experiments? If the distribution of potential outcomes

in the population is left unspecified (except for regularity conditions), then the answer is yes,

in the sense that the estimator achieves the semiparametric efficiency bound (Newey, 1990) of

the problem as N1, N0 → ∞. However, as argued by Athey et al. (2021), in several contexts,

this result is not enough. Especially in experimental settings deployed by big tech companies,

treatment effects are small, and yet economically significant. These settings are characterised

by heavy-tailed distributions of the outcome distribution, which leads to the variance of estimates

based on (3) being quite large. The combination of small effects and large variances leads to low

power in detecting effects based on (3), which renders the estimator quite unappealing.4

In light of the preceding observations, Athey et al. (2021) propose estimating β using semipara-

metric methods. Their idea is to leave the distribution (quantile function) of potential outcomes

in the absence of treatment, FY (0) (QY (0)), unspecified; and to parametrise the distribution in the

treatment group as:

QY (1)(u) = G(QY (0)(u); θ0) , (4)

where θ0 ∈ Θ ⊆ Rd. The authors focus on constructing efficient estimators, which achieve the

semiparametric efficiency bound of the problem. We propose to analyse their environment through

the lenses of L-moment-based estimation, which has been shown to work well in finite samples in

the parametric seeting. In particular, we propose to estimate (4) using a plug-in version of the

4Indeed, as exemplified in Athey et al. (2021,page 1): “For example, Lewis and Rao (2015) analyze challenges with

statistical power in experiments designed to measure digital advertising effectiveness. They discuss a hypothetical

experiment where the average expenditure per potential customer is $7, with a standard deviation of $75, and where

an average treatment effect of $0.35 (0.005 of a standard deviation) would be substantial in the sense of being highly

profitable for the company. In that example, an experiment with power for a treatment effect of $0.35 equal to

80%, and a significance level for the test of means of 0.05, would require a sample size of 1.4 million customers. As

a result confidence intervals for the average effect of an advertisement are likely to include zero even if the average

effect were substantively important, even with large sample sizes, e.g., over a hundred thousand units.”
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L-moment estimator (2), where we plug a nonparametric estimator of QY (0) (the quantile function

in the control group) on (4) and estimate θ by minimising:

θ̂plug ∈ arginfθ∈Θ

(∫ p

p

[Q̂Y (1)(u)−G(Q̂Y (0)(u); θ)]P
L(u)du

)′

WL

(∫ p

p

[Q̂Y (1)(u)−G(Q̂Y (0)(u); θ)]P
L(u)du

)
,

(5)

where Q̂Y (d), d ∈ {0, 1} denotes the empirical quantile function in the group with D = d; P L(u) =

(P1(u), P2(u), . . . , PL(u))
′ is a vector with the first L elements of an orthonormal sequence in

L2[0, 1], and 0 ≤ p < p ≤ 1 are trimming constants. This estimator nests a “plug-in” L-moment

estimator as a particular case, in which case we set Pl =
√
2l − 1P ∗

l−1 and take 0 = p < p = 1

and p = 0 < 1 = p. It also generalises the L-moment approach by allowing different types of

orthonormal sequences to be used, and by allowing for trimming.

The plug-in approach (5) will lead to a larger variance than in the case where FY (0) is known.

Indeed, proceeding similarly as in Alvarez et al. (2023), we are able to write, under differentiability

conditions analogous to those in Proposition 2 of Alvarez et al. (2023), and as L,N1 ∧ N0 → ∞,

(N1 ∧N0)/Nj → cj, j ∈ {0, 1}: √
N0 ∧N1(θ̂plug − θ0) =

−(∇θ′h
L
1 (θ0)

′ΩL∇θ′h
L
1 (θ0))

−1∇θ′h
L
1 (θ0)

′ΩL

[
√
c1
√
N1

(∫ p

p

(Q̂Y (1)(u)−QY (1)(u))P
L(u)du

)
−

√
c0
√
N0

(∫ p

p

∂qG(QY (0)(u); θ0)(Q̂Y (0)(u)−QY (0)(u))P
L(u)du

)]
+ oP (1)

(6)

where hL1 (θ) =
∫ p
p
(Q̂Y (1)(u)−G(QY (0)(u); θ)), and ΩL is a nonstochastic L× L´ matrix such that

∥WL −ΩL∥2 = op(1), where ∥·∥2 is the spectral norm. The first term in the above equation refers

to the asymptotic linear representation that would have been obtained were QY (0) known. The

additional term is due to nonparametric estimation of QY (0). This term will inflate the variance of

θ̂plug, vis-à-vis the case where QY (0)(u) is known.
5

In spite of the additional term in the asymptotic linear representation of the estimator, we

are able to show that our L-moment estimator, under optimal weights, a choice of functions

{Pl} that constitute orthonormal bases (such as rescaled Legendre polynomial
√
2l − 1P ∗

l−1) and

p = 0 < 1 = p, is efficient, in the sense that it attains the semiparametric efficiency bound derived

in Lemma 1 of Athey et al. (2021). A proof of this fact is sketched in Appendix A and proceeds

similarly as the proof of the parametric case presented in Appendix G of Alvarez et al. (2023).

Optimal weights can be computed using either the Gaussian or Bahadur-Kiefer approximations

5In the text, we consider a parametrisation where QY (1)(u) depends on QY (0) solely through QY (0)(u). This

coincides, up to notation, with the parametrisation in Athey et al. (2021). We could consider more general forms

of dependence of QY (1)(u) on QY (0) by working with Gâteaux derivatives (Newey, 1994).
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discussed in Alvarez et al. (2023) and the asymptotic linear representation (6). Indeed, it follows

that, under the conditions of Theorem 3 of Csorgo and Revesz (1978) (stated as Theorem 1 in

Alvarez et al. (2023)), there exist independent Brownian bridges BN0 and BN1 such that:

√
N0 ∧N1(θ̂plug − θ0) =

−(∇θ′h
L
1 (θ0)

′ΩL∇θ′h
L
1 (θ0))

−1∇θ′h
L
1 (θ0)

′ΩL

[
√
c1

(∫ p

p

BN1(u)

fY (1)(QY (1)(u))
P L(u)du

)
−

√
c0

(∫ p

p

∂qG(QY (0)(u); θ0)
BN0(u)

fY (0)(QY (0)(u))
P L(u)du

)]
+ oP (1),

(7)

provided that
∫ p
p

1
fY (1)(QY (1)(u))

2 < ∞ and
∫ p
p

∂G(QY (0)(u);θ0)
2

fY (0)(QY (0)(u))
2 < ∞. Representation (7) can be used

to compute the obtimal weigting scheme:6

Ω∗
L = V

[
√
c1

(∫ p

p

BN1(u)

fY (1)(QY (1)(u))
P L(u)du

)
+
√
c0

(∫ p

p

∂qG(QY (0)(u); θ0)
BN0(u)

fY (0)(QY (0)(u))
P L(u)du

)]−
,

and to conduct inference based on normal critical values. Alternatively, one may resort to a

Bahadur-Kiefer approximation, which leads to an identical formula for the optimal weighting

matrix, but motivates inference based on draws from the uniform distribution. We refer the reader

to Section 4 of Alvarez et al. (2023) on the merits of each approximation as a basis for inference.

Interestingly, our estimator is asymptotically efficient without further corrections,7 which con-

trasts with the estimators proposed by Athey et al. (2021), which require estimating the efficient

influence function via cross-fitting to correct a first-step estimator. We also expect our estimator

to work well in practice, given the Monte Carlo simulations in previous sections. Finally, we note

that our plug-in approach is computationally efficient for flexible parametrisations of treatment

effects. Indeed, if we consider:

G(QY (0)(u), u; θ) =
K∑
j=0

θju
j +QY (0)(u) , (8)

6We use A− to denote the generalised inverse of matrix A.
7The intuition for this result is that, similarly to the parametric case considered in Alvarez et al. (2023), a “plug-

in” L-moment estimator is asymptotically equivalent to a semiparametric maximum likelihood estimator; and, in

the model of Athey et al. (2021), it can be further shown that the semiparametric MLE is asymptotically efficient

(Newey, 1994, p. 1357-1358).
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then the plugin estimator solves a quadratic program, which can be computed efficiently.8,9,10 In

this specification, quantile treatment effects, which measure how the distributions of treated and

untreated potential outcomes differ in the population, are given by q(u) = QY (1)(u)−QY (0)(u) =∑K
j=0 θju

j. The average treatment effect is given by β =
∫ 1

0
(QY (1)(u)−QY (0)(u))du =

∑K
j=0

θj
j+1

.

Remark 1 (A statistic for overidentifying restrictions). When L > d, we may consider a test

based on overidentifying restrictions. Specifically, we consider the J statistic:

Ĵ = (N0 ∧N1)

(∫ p

p

[Q̂Y (1)(u)−G(Q̂Y (0)(u); θ̂plug)]P
L(u)du

)′

WL×(∫ p

p

[Q̂Y (1)(u)−G(Q̂Y (0)(u); θ̂plug)]P
L(u)du

)
.

(9)

Under the null that the model is correctly specified (i.e. that there exists θ ∈ Θ such that

QY (1)(u) = G(θ;QY (0)(u))), and when an estimator of the optimal weighting scheme is used, it is

possible to use the Gaussian strong approximation discussed above to show that the distribution

of the test statistic can be approximated by a chi-squared with L− d degrees of freedom, provided

that L grows sufficiently slowly so that the Kolmogorov distance between the true distribution and

8Notice that, for K > 0, specification (8) is actually not nested in the model (4) of Athey et al. (2021). Indeed,

for K > 0, the u-quantile of QY (1) is allowed to depend directly on u, whereas in (4) that is not the case. It is

straightforward, however, to show that the plug-in L-moment estimator remains consistent in model (8); and that the

asymptotic linear representation (6) also holds for (8) if one replaces GY (0)(QY (0)(u); θ0) with GY (0)(QY (0)(u), u; θ0)

in the formula. It should be noted, however, that the efficiency bound computed by Athey et al. (2021) for model

(4) does not immediately extend to (8) when K > 0. Indeed, when K > 0, the tangent set of model (8) has a

different structure than the one of (4). We thus cannot a priori guarantee that the plug-in L-moment estimator

is statistically efficient for (8) when K > 0. We leave exploration of efficiency in this case, and particularly the

efficiency bound calculation, for future research. We note, however, that, even if we cannot ensure statistical

efficiency of our estimation approach when K > 0, in our empirical application our approach is able to provide

smaller standard errors than the difference in means estimator even when K > 0. Moreover, in light of the linear

representation (6), our approach also provides us with an specification test of the parametrisation (8). See Remark

1 for details.
9Observe that, since G(QY (0)(u), u; θ) is a quantile function, we expect it to be non-decreasing. In some settings

(e.g. Gourieroux and Jasiak (2008)), it is desirable that the estimated quantile function preserve monotonicity. In

our context, we may impose monotonicity in the estimation of (8) by including linear restrictions in the quadratic

program that ensure the estimated quantile function is monotonic. Altrnatively, we may estimate the quantile

function without restrictions, and monotonise it by using the rearrangement procedure in Chernozhukov et al.

(2009).
10Another advantage of our estimation method under this polynomial specification is that the optimal weighting

matrix can be computed without resorting to a first-step estimator of θ0. Indeed, since ∂qG(QY (0)(u), u; θ0) = 1,

an estimator of the optimal weighting matrix may be computed by estimating densities in the treatment and control

groups nonparametrically and using the empirical quantile functions in each group. In our empirical application,

we use the estimator of Cattaneo et al. (2020) to estimate the densities in each group nonparametrically.
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the approximating distribution converge to zero. We refer the reader to Remark 2 in Alvarez et al.

(2023) for further details on the latter point.

Remark 2 (Selecting the number of L-moments used). It is possible to adapt the moment selection

procedures proposed in Alvarez et al. (2023) in the fully parametric setting to our semiparametric

context. It should be noted, however, that, as discussed by the authors, a rigorous higher-order

expansion of quantile estimators is only available up to “approximate” second-order.11 This is due

to nondifferentiability of the estimating function associated with the empirical quantile process.

In these cases, if one wishes to estimate the mean-squared error up to a higher order, one has

to appeal to the heuristic proposed by Phillips (1991), whereby the “derivative” of an indicator

function is replaced by the Dirac delta function. In a fully parametric context under iid data,

Alvarez et al. (2023) bypasses these problems by using a parametric bootstrap to account for

higher-order moments of the empirical quantile process. However, in a semiparametric context,

this solution is not available, and moment selection procedures based on higher-order expansions

of the target estimand either require working up to “approximate” second order or on relying in

Phillips’s heuristic.

As for the regularised estimation of the weighting matrix, such approach is immediately extend-

able to the semiparametric setting. Specifically, Alvarez et al. (2023) provides high-level conditions

that ensure validity of such approach, by allowing application of an approximation result in Luo

et al. (2015). Nonetheless, appropriate algorithms for setting the ℓ1 penalties are more difficult

to establish in the semiparametric setting, for they require good estimators of the variance of the

nonparametric estimators used in constructing the estimated weighting matrix. As a consequence,

we leave construction of proper selection methods in the semiparametric setting for future versions

of this paper.

Remark 3 (Motivating the semiparametric model). In some settings, it is possible to motivate the

semiparametric specification (4) from Economic Theory. Appendix B provides two such examples.

4. Empirical application

We illustrate the usefulness of our approach by using data from a randomised experiment in the

municipality São Paulo. In 2018, a large ride-hailing company in Brazil randomised discounts to a

subset of its users. The goal of the experiment was to understand whether short-run incentives to

modal integration could alter long-run behavior via learning effects. Specifically, the platform

asked for information from some of its active users and, among the respondents, randomised

discounts to trips starting or ending at a subway/train station during two weeks between the end

of November and beginning of December 2018. Users were randomised into three regimes: (i) a

11Specifically, Franguridi et al. (2022) provides an uniform-in-u expansion of
√
N(Q̂Y (u) − QY (u) up to order

N−3/4.
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control group (which was not informed about the experiment); (ii) eligibility to two 20% discounts

per day, limited to a total of 10 BRL discount per car ride; and (iii) eligibility to two 50% discounts

per day, limited to 10 BRL per ride. The discounts were announced the day they started. We have

access to the number of rides taken by each individual in each group on a biweekly basis in the

fortnights leading up to, during and after the treatment. We also know how many of these rides

started or ended in a subway-train station.

Classical consumer theory, where consumers are assumed to have full knowledge of the goods

available to them, predicts two types of effects related to giving discounts: first, one would expect a

substitution effect, whereby users reduce consumption in other goods and increase consumption

in the good affected by the discount. In our setting, such effect is expected to increase bimodal

rides in the two weeks during which the discount is available, and reduce the number of “unimodal”

rides in the same period. One would also expect a reduction of both types of rides in the weeks after

the discount, due to intertemporal substitution (consumers shift consumption between periods).

Nonetheless, given that transportation may be taken to be a necessary good, we would expect such

effects to be quite small. On the other hand, standard theory also predicts an income effect:

given that a consumer’s basket is less costly, there is more available income to spend. This effect

is expected to increase consumption in both types of rides both during and after treatment.

Finally, a third possible effect, which is not predicted by standard consumer theory, would be

a learning effect. This effect hinges on the assumption that consumers do not fully know ex-

ante the goods available to them. In our setting, where discounts are randomised among active

users of the platform, this effect would be expected to occur among users that do not use public

transportation. Inasmuch as the discounts lead them to learn more about this service, one would

expect a long-term change in bimodal rides, even after the discount is over. Note that such change

could be either positive or negative. We would also expect an oppositely-signed, long-term effect,

on “unimodal” rides, as users shift from (to) “unimodal” rides to (from) “bimodal” ones.

In practice, a mix of the three types of effects is expected to occur. Since they act in counteracting

directions, one would expect the overall effect to be small. In light of that, and given the heavy

tailed nature of the distribution – the average number of rides by fortnight in the dataset, even

after excluding those pairs of user/fortnights where no rides were taken, is 3.64 rides, whereas the

maximum is 57 rides –, a simple comparison of means is expected to perform poorly. We thus

propose to analyse the experiment using the methodology introduced in this chapter.

To perform our analysis, we restrict our sample to users who completed at least one ride between

the start of 2018 and up until the day before treatment was in place. With that, we expect to

estimate effects among users who already know the car-riding services (so learning effects should

not act towards increasing “unimodal” rides). This leaves us with N0 = 1, 291 control units,

N1,20% = 1, 381 units in the 20% discount treatment arm, and N1,50% = 1, 319 in the 50% treatment

arm. We analyse the effect of each treatment on bimodal and “unimodal” (total minus bimodal)
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rides, in the fortnights leading up to, on, and after treatment was in place. Since users were only

alerted of the treatment the day it started, we expect no effects in the fortnight leading up to

treatment. We contrast a simple comparison of means between treatment and control arms with

parametrisation (8). We consider specifications with K = 0, 1, 2, 3 for “unimodal” rides. The

“bimodal” outcome is lightly-tailed, so the difference in means tends to perform well. Indeed,

Table 1 reports treatment effects estimates from differences in means for bimodal rides, in the

fortnight prior to (t = −1), during (t = 0) and after (t > 0) treatment was in place. Standard

errors are reported in parentheses. We observe a strong and significant increase in bimodal rides

on the fortnight during which treatment is in place, and no effects prior or after that. As expected,

the 50% discount leads to a larger increase in bimodal rides than the 20% discount.

Tables 2 and 3 report results for unimodal rides using the difference in means estimator and the

parametric specifications (6) with K ranging from 0 to 3. In using the L-moment estimator, we

set L = 10. We also report the p-value from the specification test discussed in Remark 1. A few

patterns stand out: first, the parametric specifications allow us to obtain substantial reductions in

standard errors (vis-à-vis the difference in means estimator), especially with K = 0 and K = 1.12

This gain in precision allows us to make tighter inferences on treatment effects. Specifically, and

discarding specifications for which the J-test rejects the null, we note that:

(1) For the 20%, systematic effects on unimodal rides do not appear to exist – estimated effects

in the low-K specifications that survive the J-test are small, (relatively) precisely estimated

and statistically insignificant.

(2) For the 50% discount, there is strong evidence of a decrease in unimodal rides in t = 1

and t = 3. There is also some evidence of a decrease in rides in t = −1 when using

values of K > 0, which would suggest some anticipation effect, even though the discount

was announced at t = 0. However, it should be noted that this effect at t = −1 does

not survive in the constant treatment effect specification (K = 0), which also estimates

effects much more precisely than other specifications. Similarly, there is some evidence of

negative effects at t = 5 when using K > 0, though this effect does not survive the constant

treatment effect specification.

All in all, the results appear compatible with the 50% discount producing large intertemporal

substitution effects on unimodal rides. The fact that bimodal rides in other periods are not

affected could be explained by the assumption that bimodal rides may be considered a necessary

good, with low degree of downward substitutability. Negative effects on unimodal rides persist

12For values of K larger than 1, in some periods the standard error of the parametric estimator exceeds that of

the difference in means. This is due to the fact that L is kept fixed. By increasing L, we are able to decrease the

estimated standard error, though potentially at the cost of finite-sample bias. As discussed in the previous section,

a useful topic for future research is to adapt the selection methods in Alvarez et al. (2023) to the semiparametric

setting, so as to produce methods to automatically select L with good statistical properties.
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over a month after the discount is over.13 However, it is interesting to note that there does not

appear to be a contemporaneous substitution effect. This could be explained by the income effect

counterbalancing the substitution effect at t = 0. Such large income effect in the contemporaneous

period is expected to occur in settings where the return to savings is low. Finally, note that we do

not find evidence of learning effects towards bimodal rides.

Even though our results could be driven by standard substitution effects – coupled with a

downward substitutability constraint on bimodal rides, which may be interpreted as reflecting the

“necessary” character of this good –, one could also interpret them as being driven by a setting

where users, by substantially increasing bimodal rides, learn about the quality of public transporta-

tion, and, being positively surprised, shift consumption away from unimodal rides towards purely

public transportation trips, whilst keeping bimodal rides unchanged. In Appendix C, we introduce

a learning model that is able to produce these results. This model may be able to better explain

the persistence of strong and negative effects on unimodal rides, which may be incompatible with a

priori reasonable values for the intertemporal elasticity of substitution of rides, depending on the

relative price of bimodal and unimodal rides. As future research, it would be interesting to obtain

access to the monetary values of each ride, so that we could better understand which explanation

is more appropriate. One would also hope to further explore the model in Appendix C, so as to

derive further testable implications on our available data.

Table 1. Bimodal rides

20% discount ,

t = −1 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Mean control Diff mean Mean control Diff mean Mean control Diff mean Mean control Diff mean Mean control Diff mean Mean control Diff mean Mean control Diff mean Mean control Diff mean

0.1084 -0.0100 0.1325 0.0471 0.1154 0.0157 0.0434 0.0037 0.1030 -0.0053 0.1038 -0.0046 0.0813 0.0258 0.1131 0.0086

( 0.0140) ( 0.0189) ( 0.0181) ( 0.0269) ( 0.0154) ( 0.0231) ( 0.0070) ( 0.0098) ( 0.0149) ( 0.0212) ( 0.0151) ( 0.0197) ( 0.0132) ( 0.0222) ( 0.0145) ( 0.0218)

50% discount

t = −1 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Mean control Diff mean Mean control Diff mean Mean control Diff mean Mean control Diff mean Mean control Diff mean Mean control Diff mean Mean control Diff mean Mean control Diff mean

0.1084 -0.0061 0.1325 0.0950 0.1154 -0.0100 0.0434 0.0105 0.1030 -0.0090 0.1038 -0.0090 0.0813 0.0134 0.1131 0.0021

( 0.0140) ( 0.0189) ( 0.0181) ( 0.0281) ( 0.0154) ( 0.0210) ( 0.0070) ( 0.0120) ( 0.0149) ( 0.0200) ( 0.0151) ( 0.0199) ( 0.0132) ( 0.0193) ( 0.0145) ( 0.0206)

13The fact that we dot not encounter significant effects on rides at t = 2, but at t = 1 and t = 3, could be justified

by the fact that this fortnight corresponds to the last week of 2018 and the first week of 2019, when unimodal rides

may be assumed difficult to substitute due to the holidays/end-of-year celebration.
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Table 2. Unimodal rides: 20% discount

t = −1

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 1.9899 -0.0377 0.0202 -0.1683 -0.1192 -0.1312

Std. Error ( 0.0777) ( 0.1148) ( 0.0420) ( 0.0987) ( 0.1083) ( 0.1091)

pval J-test 0.1139 0.2800 0.2841 0.2561

t = 0

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 2.1472 0.0961 0.0475 0.1121 0.1018 0.1015

Std. Error (0.0860) (0.1257) (0.0455) (0.1000) (0.1146) (0.1146)

pval J-test 0.8334 0.8110 0.7267 0.6181

t = 1

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 2.1526 -0.0519 0.0229 0.0802 0.0667 0.0693

Std. Error ( 0.0900) ( 0.1258) ( 0.0437) ( 0.1013) ( 0.1125) ( 0.1129)

pval J-test 0.3235 0.2687 0.1959 0.1340

t = 2

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 1.2208 0.0979 0.0301 0.2108 0.1386 0.1527

Std. Error (0.0601) (0.0853) (0.0404) (0.0913) (0.1005) (0.1020)

pval J-test 0.3187 0.6993 0.9210 0.9251

t = 3

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 1.8737 0.0046 -0.0045 0.0316 0.0284 0.0286

Std. Error ( 0.0895) ( 0.1253) ( 0.0521) ( 0.1133) ( 0.1278) ( 0.1288)

pval J-test 0.9995 0.9990 0.9969 0.9906

t = 4

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 1.9535 -0.0136 0.0648 0.1932 0.1424 0.1546

Std. Error ( 0.0883) ( 0.1267) ( 0.0491) ( 0.1152) ( 0.1250) ( 0.1273)

pval J-test 0.0137 0.0135 0.0113 0.0065

t = 5

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 1.9620 -0.0707 -0.0141 -0.0917 -0.0660 -0.0744

Std. Error ( 0.0916) ( 0.1299) ( 0.0654) ( 0.1270) ( 0.1336) ( 0.1349)

pval J-test 0.9800 0.9802 0.9770 0.9631

t = 6

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 2.1309 -0.0201 -0.0120 -0.0980 -0.0609 -0.0851

Std. Error ( 0.0977) ( 0.1358) ( 0.0506) ( 0.1256) ( 0.1313) ( 0.1351)

pval J-test 0.9641 0.9642 0.9820 0.9883
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Table 3. Unimodal rides: 50% discount

t = −1

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 1.9899 -0.1507 -0.0323 -0.2035 -0.1804 -0.1735

Std. Error ( 0.0777) ( 0.1067) ( 0.0382) ( 0.0973) ( 0.1021) ( 0.1035)

pval J-test 0.7931 0.9868 0.9902 0.9829

t = 0

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 2.1472 -0.0554 0.0040 -0.1070 -0.0558 -0.0655

Std. Error ( 0.0860) ( 0.1190) ( 0.0419) ( 0.1066) ( 0.1130) ( 0.1135)

pval J-test 0.8439 0.8909 0.9723 0.9872

t = 1

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 2.1526 -0.2049 -0.0487 -0.3115 -0.2299 -0.2475

Std. Error ( 0.0900) ( 0.1259) ( 0.0426) ( 0.1048) ( 0.1108) ( 0.1124)

pval J-test 0.0658 0.3854 0.8441 0.8642

t = 2

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 1.2208 -0.0767 -0.0118 -0.0997 -0.0838 -0.0762

Std. Error ( 0.0601) ( 0.0839) ( 0.0395) ( 0.0865) ( 0.0966) ( 0.0982)

pval J-test 0.9864 0.9984 0.9971 0.9957

t = 3

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 1.8737 -0.2960 -0.0803 -0.3768 -0.2032 -0.2172

Std. Error ( 0.0895) ( 0.1177) ( 0.0506) ( 0.1039) ( 0.1245) ( 0.1247)

pval J-test 0.0004 0.0107 0.0611 0.1419

t = 4

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 1.9535 -0.1613 0.0074 -0.0931 -0.0772 -0.0700

Std. Error ( 0.0883) ( 0.1230) ( 0.0468) ( 0.1113) ( 0.1201) ( 0.1223)

pval J-test 0.6302 0.6387 0.5455 0.4397

t = 5

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 1.9620 -0.2357 -0.0290 -0.3059 -0.2555 -0.2520

Std. Error ( 0.0916) ( 0.1257) ( 0.0641) ( 0.1253) ( 0.1307) ( 0.1326)

pval J-test 0.4859 0.9848 1.0000 1.0000

t = 6

Mean control Diff Means K = 0 K = 1 K = 2 K = 3

Estimate 2.1309 -0.2295 -0.0423 -0.2098 -0.1480 -0.1716

Std. Error ( 0.0977) ( 0.1304) ( 0.0530) ( 0.1293) ( 0.1366) ( 0.1396)

pval J-test 0.6826 0.8051 0.9210 0.9270
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5. Concluding remarks

This paper extends the L-moment-based estimation approach to the semiparametric models of

treatment effects introduced by Athey et al. (2021). We show that a simple plug-in version of

the estimator proposed by Alvarez et al. (2023) is able to produce a statistically efficient and

coputationally attractive estimator, without having to resort to the influence-function corrections

discussed in Athey et al. (2021). We then apply our methodology to data on a randomised ex-

periment conducted in São Paulo by a ride-hailing company, where the goal was to understand

whether short term changes in the price of bimodal rides could lead to long-term changes in the

demand for public transportation. For the 50% discount, our results appear compatible with

either strong intertemporal substitution effects away from unimodal rides and towards bimodal

rides at the time of the discount; or with a learning effect that permanently shifts demand from

unimodal rides towards purely public transportation trips. As future steps of this research project,

we aim to fully extend the methods of selection of L-moments proposed by Alvarez et al. (2023)

to the semiparametric setting; to better understand which of the two competing explanations is

more plausible in our experimental setting; and to motivate our functional form from our learning

model.
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Appendix A. Efficiency of semiparametric L-moment estimator

Let N = N0 +N1 denote the sample size. Consider the alternative (unfeasible) estimator:

θ̌ ∈ argminθ∈Θ
∑
i∈SN

∑
j∈SN

(
1

√
p
1

(Q̂Y (1)(i)−QY (1)(θ)) +
1

√
p
0

∂qG · (Q̂Y (0)(i)−QY (0)))× κi,j×(
1

√
p
1

(Q̂Y (1)(j)−QY (1)(θ)) +
1

√
p
0

∂qG · (Q̂Y (0)(j)−QY (0))

)
,

for a grid of SN points SN = {s1, s2, . . . , sSN
} ⊆ (0, 1) and weights κi,j, i, j ∈ SN . Here, QY (1)(θ) =

G(QY (0)(u), θ) and ∂qG = ∂qG(QY (0)(u), θ0). We also set pl = lim Nl

N
, l ∈ {0, 1}, and we assume

pl ∈ (0, 1). Under some conditions, and as N,SN → ∞, the estimator has asymptotic linear

representation as follows:

√
N(θ̌ − θ0) = − (∂θ′G

′
SN

κSN
∂θ′GSN

)−1∂θ′G
′
SN

κGN

[ 1
√
p
1

fY (1)
−1 ∗

√
N1FY (1),SN

+

∂qG√
p
0

∗ fY (0)
−1 ∗

√
N0FY (0),SN

]
+ op(1) ,

where ∗ denotes entry-by-entry multiplication, fY (d)
−1 =

(
1

fY (d)(QY (d)(s1)
1

fY (d)(QY (d)(s2))
. . . 1

fY (d)(QY (d)(sSN
))

)′
and ∂qG is similarly defined. First, we observe that:

1

fY (1)(QY (1)(v))
= Q′

Y (1)(v) = ∂qG(QY (0)(v); θ0) ·
1

fY (0)(QY (0)(v))
,
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which implies, by taking SN =
{

1
SN+1

, 2
SN+1

, . . . , SN

SN+1

}
and applying Lemma C.1. in Firpo et al.

(2022), that we are able to show that the variance of the estimator under optimal weights is:

V∗ = ((∂GSN
∗ (1′

d ⊗ fY (1)))
′Σ−1

SN
(∂GSN

∗ (1′
d ⊗ fY (1))))

−1 ,

where

(Σ−1
SN

)si,sj = p0p1[1{si=sj}2(SN + 1)− (1{si=sj+1} + 1{si=sj−1})(SN + 1)] .

Proceeding similarly as in Appendix G of Alvarez et al. (2023), we obtain that:

lim
N→∞

(
V

∗−1
)
d1,d2

= p0p1

∫ 1

0

dHd1(v)

dv

∣∣∣∣∣
v=u

dHd2(v)

dv

∣∣∣∣∣
v=u

du ,

with Hd(u) = fY (1)(QY (1)(v))∂θdG(QY (0)(v), θ0). Next, proceeding similarly as in the proof of

Alvarez et al. (2023), we conclude that:

(
V

∗−1
)
d1,d2

= p0p1(I(θ0))d1,d2 ,

where I(θ0) is the Fisher information matrix of the parametric model θ 7→ fY (1)(y|θ) that assumes

QY (0) known. It then follows by Lemma 1 of Athey et al. (2021) that the estimator is asymptotically

efficient, as it achieves the efficiency bound derived by the authors.

To conclude, we note that, when the {Pl}l form orthonormal bases, the estimator θ̌ corresponds

to a method-of L-moments estimator that uses infinitely many moments. We are then able to

show, by reasoning similarly as in Appendix G of Alvarez et al. (2023), that the estimator described

in Section 3, which uses a finite but increasing number of L-moments, is also efficient, since under

an appropriate choice of weights this estimator is asymptotically equivalent to θ̌.

Appendix B. Motivating the semiparametric specifications from economic theory

This Appendix provides two examples of (quasi)experimental analyses where the semiparametric

specification (4) can be motivated by Economic Theory.

B.1. A scale model. Consider a population of firms producing a common good with production

function fz(q) = zlα, where the productivity parameter z is distributed in the population interest

with df Fz, and l is labour. Suppose competitive markets, and that there are payroll and revenue

taxes. In this case, labour demand is given by:

l0 =

(
(1− τr)αz

(1 + τw)w

)1/(1−α)

.

Consider a randomised experiment that randomly changes payroll taxes of some firms to τ ∗.

The quantile function of the treated potential outcome is then:
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Ql(1)(u) =

(
(1 + τw)

(1 + τ ∗)

)1−α

Ql(0)(u) ,

i.e. a scale model. Notice that, in this setting, the experiment identifies α and, therefore, Fz.

B.2. A model for quasilinear demand. Consider a population of consumers with quasilinear

preferences over two goods (x,y):

u(c1, c2) = Axα + y ,

where income M is heterogeneous in the population of interest; and A, α and prices are homoge-

nous. In this case, the demand for good y is given by:

y = max{0, (M − (Aα(py/px))
1/(1−α)px)/py} .

Observe that:

Qy(u) = G(QM(u);A,α, px, py) .

Therefore, if one has data from consumption of y from one sample, and data onM from another

independent sample from the same target population, one could use our method to efficiently

estimate A and α.

Appendix C. A learning model on the demand for public transportation

In this section, we introduce a simple model which is able to rationalise the findings in Section 4.

The model consists of a standard intertemporal choice problem with one additional ingredient: a

learning mechanism, whereby increased demand for bimodal rides increases knowledge of the qual-

ity of public transportation in the future. The model produces two effects: first, a discount in an

initial period may increase demand for bimodal rides in the same period due to a learning bequest,

whereby an agent increases demand so as to have better information on the quality of the service

in the future. Moreover, for a given configuration of parameters, bimodal rides need not change by

much, even if public transportation is revealed to be of good quality: in contrast, unimodal rides

decrease when this occurs. The two effects combined may be better able to rationalise the strong

and long-running negative substitution effects reported in the main text for unimodal rides, and

the insignificant changes encountered in bimodal rides.

We consider a two-period problem (t ∈ {0, 1}) where an agent has to choose her share of con-

sumption on unimodal rides (u), bimodal rides (b) and public transportation (c). Her instantaneous

preferences at each period are given by:

S(ut, bt, ct) = uαt + γAϕbαt + Acαt ,

for positive constants α, γ, ϕ and α < 1. Observe that the parameter A governs the relative gain

of choosing public transportation over unimodal rides. It also affects the relative gain of bimodal
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rides through the term Aϕ.14 We assume the agent does not observe A, but has a Gaussian

prior over log(A), i.e. the agent assumes log(A) ∼ N(µ0, σ
2
0). Consumption of bimodal rides and

public transportation in period 0 produces an unbiased signal of the quality of rides, where the

informativeness of the signal is inversely related to the amount consumed in period 0. Specifically,

we assume that, afeter consuming (b0, c0) units in period zero, the agent observes a signal:

Y | log(A) ∼ N

(
log(A),

1

h1(b0, c0)

)
,

for an increasing, everywhere positive and differentiable mapping h1. We assume that the agent

maximises expected utility, given the information available to her. Specifically, and taking c as the

numéraire, at period 0, the agent solves:

max
u0,b0,c0≥0

E[S(u0, b0, co) + βS(u1(y, d), b1(y, d), c1(y, s))]

s.t. d = (1 + r)[w0 − p0,bb0 − p0,uu0 − c0] ,
(10)

where β is the discount factor, d is the savings from period zero to one, w0 is the income in period

0, and r is the interest rate. The random variables u1(y, d), b1(y, d), c1(y, s) are the solutions to

the second period problem, i.e.:

max
u1,b1,c1≥0

E[S(u1, b1, c1)|Y ]

s.t. d+ w1 = p1,bb1 + p1,uu1 + c1 ,
(11)

We note that the model above nests a standard intertemporal choice problem with full knowledge

of the quality of the service if we set σ2
0 = 0.

We begin by solving the model by backward induction. First, by known results on conjugate

priors, we have that:

log(A)|Y ∼ N

(
h0µ0 + h1(b0, x0)Y

h0 + h1(b0, c0)
, (h0 + h1(b0, c0))

−1

)
,

where h0 = 1/σ2
0 is the precision of the prior. It then folows, by the properties of the lognormal

distribution that:

E[A|Y ] = exp

(
h0µ0 + h1(b0, c0)Y

h0 + h1(b0, c0)
+

(h0 + h1(b0, c0))
−1

2

)
, (12)

and, similarly:

E[Aδ|Y ] = (E[A|Y ])δ exp

(
δ(δ − 1)

(h0 + h1(b0, c0))
−1

2

)
= (E[A|Y ])δψδ(b0, c0) . (13)

14The term Aϕ could be interpreted as a reduced form for the agent’s problem of deciding the composition of

bimodal rides between public transportation and car trips according to a Cobb-Douglas production function, where

A enters the production function as a public-transportation-augmenting factor.
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Next, we note that the first-order conditions on the second period problem entail:

u1 =

(
1

p1,uE[A|Y ]

) 1
1−α

c1 ,

b1 =

(
γψδ(b0, c0)

p1,bE[A|Y ]1−δ

) 1
1−α

c1 ,

c1 =
d+ w1

p
−α/(1−α)
1,u E[A|Y ]−1/(1−α) + p

−α/(1−α)
1,b

(
γψδ(b0,c0)

p1,bE[A|Y ]1−δ

) 1
1−α

+ 1

.

(14)

A few properties show up in this optimisation. First, if δ < 1, then, all else equal, an increase in

the signal Y unambiguously increases c1 and necessarily decreases u1. As for the effect on bimodal

rides, its sign depends on relative prices and the region E[A|Y ] lies. Specifically, it is immediate

from the above expression that:

db1
dY

∝ p
−α/(1−α)
1,u δE[A|Y ](α−δ−1)/(1−α) − (1− δ)E[A|Y ](α−δ)/(1−α) . (15)

Observe that, for large enough values of p1,u, the effect is negative. Alternatively, if δ ≈ 1,

the effect is positive. Clearly, there exist combination of parameter-signals where the effect is

arbitrarily small.

As for understanding the learning bequest, it is useful to consider some candidate choice (b̃0, c̃0)

which leads to a signal with precision h̃0; and an alternative consumption bundle which produces a

signal with precision ȟ0 < h̃0. In this case, it can be shown that, from the viewpoint of the posterior

distribution, observing a signal with precision ȟ0 is equivalent to observing two independent

signals: one with precision ȟ0, and an additional signal with another precision. It then follows by

iterated expectations and the properties of maximisation that, from the viewpoint of the agent in

period 0, choosing a more precise signal necessarily leads to higher expected utility in period 1.15

In this way, a discount on bimodal rides acts in period 0 as a subsidy to the learning mechanism,

and we would expect an increase in bimodal rides at period 0 due to this reason (in addition to

income and substitution effects).

15Alternatively, this result can be derived by applying Blackwell’s informativeness theorem (de Oliveira, 2018).
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