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a weighted LATE representation”

Appendix A. Proof of Proposition 1

Without loss of generality, we consider the monotonicity assumption in the direction P[D(z) 
D(z0)] = 1 for every z  z0. Otherwise, we can redefine the instrument as Z⇤ = �Z and the

following proof would also apply.

First, we note that, by the moment and relevance assumptions, the numerator and denominator

of �Wald are well-defined. Next, we observe that the numerator is given by:

E[(Z � g⇤(X))Y ] =

E[(Z � g⇤(X))Y (0)] + E[(Z � g⇤(X))D(Y (1)� Y (0))] =

E[(Z � g⇤(X))E[Y (0)|X]] + E[(Z � g⇤(X))D(Y (1)� Y (0))] ,

where the last equality uses iterated expectations, followed by the independence assumption. Now,

it follows from the flexible specification assumption that g⇤ =  , from which we have that E[(Z �
g⇤(X))E[Y (0)|X]] = 0.

As for the second term, we note that, for support points (x, z):

E[(Z � g⇤(X))D(Y (1)� Y (0))|Z = z,X = x] =

(z �  (x))E[D(z)(Y (1)� Y (0))|X = x] =

(z �  (x))E[(D(z)�D( (x)))(Y (1)� Y (0))|X = x]+

(z �  (x))E[D( (x))(Y (1)� Y (0))|X = x] ,

(5)

where the last equality added and subtracted D( (x)) inside the expectation. Observe that, for

PX-almost every x, D( (x)) is well-defined, since P[ (X) 2 [z, z]] = 1. Now, suppose z >  (x). In

this case, by the monotonicity assumption, D(z)�D( (x)) takes either value 0 (always- or never-

taker in the comparison between instrument values  (x) and z), or 1 (complier). Consequently, in

this case:

(z �  (x))E[(D(z)�D( (x)))(Y (1)� Y (0))|X = x] =

(z �  (x))| {z }
=|z� (x)|

P[D(z) 6= D( (x))|X = x]E[Y (1)� Y (0)|X = x,D(z) 6= D( (x))] .

Symmetrically, if z <  (x), D(z) � D( (x)) takes either value 0 or �1, with the latter corre-

sponding to compliance at the comparison between instrument values  (x) and z. Consequently,



we have that, in this case:

(z �  (x))E[(D(z)�D( (x)))(Y (1)� Y (0))|X = x] =

�(z �  (x))| {z }
=|z� (x)|

P[D(z) 6= D( (x))|X = x]E[Y (1)� Y (0)|X = x,D(z) 6= D( (x))] .

Combining the above results, and using that, for ⇠(x) := E[D( (x))(Y (1) � Y (0))|X = x],

E[(Z �  (X))⇠(X)] = 0, we have that:

E[(Z � g⇤(X))Y ] = E[!(X,Z)�(X,Z)] .

A similar argument then shows that the denominator of �Wald is equal to E[!(X,Z)], which

proves the desired result.

Appendix B. Representation for the saturate-and-weight strategy

We consider the case where the support of X is discrete, and p(X) consists of a set of dummies

for every support point of X. In this case, the “saturate-and-weight” (SW) estimand is given by

the 2SLS estimand � of the system:

D =  0(Zp(X)) + �0p(X) + u

Y = �D + !0p(X) + v
,

Note that, due to the saturated and interacted nature of the first stage, the L2(P)-projection of

D onto Zp(X) and p(X), which we denote by LD(Z,X), is such that, for every support point x,

LD(Z, x) is equal to the L2-projection of D onto an intercept and Z, in the subpopulation defined

by X = x, i.e. LD(Z,X) = a(X) + b(X)Z, where a(x) and b(x) are the intercept and slope of the

L2(P)-projection onto an intercept and Z in the subpopulation with X = x.

Next, we note that, by the mechanics of 2SLS and the Frisch-Waugh-Lovell theorem that:

�SW =
E[Y (LD(Z,X)� L̃D(Z,X))]

E[(LD(Z,X)� L̃D(Z,X))2]
,

where L̃D(Z,X) is the L2(P)-projection of LD(Z,X) onto p(X). Since p(X) is saturated, this

coincides with the conditional expectation of LD(Z,X) givenX, i.e. L̃D(Z,X) = E[LD(Z,X)|X] =

a(X) + b(X)E[Z|X]. Consequently, we have that:

�SW =
E[Y b(X)(Z � E[Z|X])]]

E[b(X)2(Z � E[Z|X])2]

=
E[�IV(X)b(X)2V[Z|X]]

E[b(X)2V[Z|X]]
,

(6)



where �IV(X) = E[Y (Z�E[Z|X])|X]
b(X)V[Z|X] = cov(Y,Z|X)

cov(D,Z|X) . Notice that, for each x, �IV(x) corresponds to the

2SLS estimand, in the subpopulation defined by X = x, of the system.

D = ax + bxZ + ⌫

Y = ↵x + �xD + ✏
, (7)

Consequently, if the Assumptions required by Proposition 1 hold in the subpopulation de-

fined by X = x (notice from (7) that, once we condition on this subpopulation, we are e↵ectively

considering a setting where the controls only include an intercept, i.e. G = R), then the representa-

tions in Proposition 1 and Corollary 1 hold for �IV(x). If the conditions hold in every subpopulation

defined by X = x, for every x in the support of X, we may plug the resulting representations of

�IV(x) onto (6) to obtain a weighted LATE representation of the saturate-and-weight estimand.

Importantly, since we require a representation to be valid separately for each subpopulation IV

estimand �IV(x), for every support point x of X, the direction of the monotonicity may vary across

subpopulations. The outer weights that aggregate across di↵erent values of X are proportional

both to the square of the strength of the subpopulation first-stage, as captured by the subpopula-

tion slope b(X), as well as proportional to the conditional variance V[Z|X]. Both features indicate

that the saturate-and-weight estimand attaches larger weights to subpopulations defined by the

support points of X where the subpopulation IV is easier to estimate.

Appendix C. Estimation of the weights

Suppose the researcher has access to a sample {Yi, Xi, Zi, Di}ni=1 from the model described in

Section 2 of the main text. She may be interested in estimating the weights !(x, z) and !⇤(x, c),

so as to have a better understanding of which complier subpopulations are assigned larger weights

in the representation. To estimate !(x, z), the researcher must have an estimator  ̂ of  , the

L2(P)-projection of Z on X. For the 2SLS estimands of system (3) in the main text, this may be

implemented by setting  ̂(X) = ✓̂0p(X), where ✓̂ is the estimated coe�cient of a linear regression

of Yi on p(Xi). More generally,  ̂ will be the estimator the researcher uses when estimating the

parameter (1) in the main text, e.g. by considering the sample analog of the minimisation problem

given by equation 2 in the main text, with the possible inclusion of a regularizing penalty if the

complexity of G is large. The researcher also requires an estimator of P[D(z) 6= D( (x))|X = x].

Observe that, by the monotonicity hypothesis in Assumption (1) in the main text, this quantity

is equal to |P[D = 1|Z = z,X = x] � P[D = 1|Z =  (x), X = x]|. Therefore, given a flexible

estimator ⌧̂(x, z) of the conditional probability function P[D = 1|Z = z,X = x], the weights

!(x, z) may be estimated, in the sample points (Xi, Zi), as:

!̂(Xi, Zi) =
|⌧̂(Zi, Xi)� ⌧̂( ̂(Xi), Xi)||Zi �  ̂(Xi)|

1
n

Pn
j=1 |⌧̂(Zj, Xj)� ⌧̂( ̂(Xj), Xj)||Zj �  ̂(Xj)|

, i = 1, . . . , n .



As for the weights !⇤(x, c), observe that (c|x) = E[(Z �  (x))1{Z � c}|X = x]. Let ̂(c|x) be
an estimator of (c|x), e.g. the prediction at X = x from a linear regression of (Zi�  ̂(Xi))1{Zi �
c} on a vector of transformations of Xi. Next, note that, by the monotonicity assumption in

Assumption 1, |P[D = 1|Z = z0, X = x] � P[D = 1|Z = z,X = x]| =
R z0

z f ⇤
C|X(c|x)dc for any

z0 > z. Consequently, if we rely on an estimator ⌧̂(z, x) that is di↵erentiable in z, and given a grid

of K points c1 < c2 < . . . < cK , we may estimate the weights as:

!̂⇤(Zi, ck) =
̂(ck|Xi)

�� @
@z ⌧̂(ck, Xi)

��
1

nK

Pn
j=1

PK
l=1 ̂(cl|Xj)

�� @
@z ⌧̂(cl, Xj)

�� , i = 1, . . . , n , k = 1, . . . , K .

Remark 6 (Testing the monotonicity assumption). The estimator of the conditional probability

function P[D = 1|Z,X] may be used to test an implication of the monotonicity hypothesis in

Assumption 1. To see this, note that an implication of this version of the monotonicity hypothesis

is that the random function z 7! P[D = 1|Z = z,X] is either nondecreasing with probability

one or nonincreasing with probability one. This implication is testable. Indeed, if one adopts

a smooth parametric form P[D = 1|Z,X] = ⇤(�0
0T (Z,X)), where ⇤ is a di↵erentiable function

with ⇤0(u) > 0 for every u 2 R, and T (Z,X) is a vector of continuous transformations of (Z,X)

di↵erentiable in Z, then the implication is equivalent to: �0
0
@
@zT (z, x) � 0 for every support point

(z, x) of (Z,X), or �0
0
@
@zT (z, x)  0 for every support point (z, x) of (Z,X). These restrictions

can be tested by constructing a uniform confidence band for the function (z, x) 7! �0
0
@
@zT (z, x).

Freyberger and Rai (2018) provide a general method for constructing such confidence band, when a

consistent and asymptotically normal estimator of �0 is available. If the band contains at least one

nonpositive or nonnegative function, then we do not reject the null that the testable implication

holds at one minus the confidence level of the band. If the band only contains functions whose

sign does not change across (z, x), i.e only nonnegative or nonpositive functions, then we reject

the null that the implication does not hold at at one minus the confidence level of the band.

Appendix D. Comparison of the approach in the main text with discretization of

continuous instruments

Consider the case where the instrument is discretely supported, with unordered support points

{z1, . . . , zK}. Suppose that the monotonicity assumption holds for some ordering of the instru-

ment, which is unknown. In the case without covariates, Angrist and Imbens (1995) show that the

2SLS estimand that uses the full set of dummies 1{Z = zj}, j = 1, . . . , K, as instruments identi-

fies a weighted average of LATEs, without having to take a stance on the correct (monotonicity-

ensuring) ordering of the points. This suggests that, in some settings without covariates, dis-

cretizing and then saturating a continuous instrument may be advantageous, as it would allow the

researcher to be agnostic about the correct order ensuring monotonicity, whereas Assumption 1 in

the main text requires Z to be encoded in a way such that potential treatment statuses z 7! D(z)



are either almost surely monotone nonincreasing or almost-surely monotone nondecreasing in z.

These benefits do not directly extend to specifications that control for covariates X, though. In-

deed, in a discrete unordered instrument setting with controls, Blandhol et al. (2022) argue that,

either the researcher has to saturate-and-weightX, interacting the indicators for the support points

of X with the dummies for the support points of Z (and using these interactions as instruments),

or the researcher should recode Z so as to reflect the monotonicity-ensuring order in D, and then

consider estimation of the system with a scalar instrument as in (3). If the researcher does not

proceed in either way, then some of the underlying weights in the LATE representation of the es-

timand may be negative. From the estimation viewpoint, the saturate-and-weight strategy, which

only works for discrete/discretized X, may generate a many-weak instruments problem (Miku-

sheva and Sun, 2021). In contrast, we note that, if the monotonicity hypothesis in Assumption 1

holds for some unknown recoding of Z, then, by taking v(Z) = P[D = 1|Z] as the instrument, we

automatically obtain the monotonicity-ensuring encoding.2 This suggests that the undiscretized

approach discussed in the main text is often appropriate, provided that we correctly encode Z

(which possibly involves estimating v in a flexible way).
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This idea is originally discussed in page 470 of IA.
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